
Halley’s Iteration

Halley’s method provides an infinite number of higher-order generalizations of
Newton’s method for finding a root of a single nonlinear equation. The method
requires analytical and numerical computation of higher-order derivatives of the
function in question. The general algorithm for any fixed value of n = 0, 1, . . . is
to iterate for k = 0, 1, 2, . . .

xk+1 = xk + (n + 1)

(
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(
1

f(xk)
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,

starting with an initial guess x0. The superscript in the above formula denotes the
order of the derivative.

The case n = 0 gives Newton’s iteration because(
1

f

)′

= − f ′

f 2
,

and therefore the algorithm is:

xk+1 = xk +

(
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)
(
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) = xk −
f(xk)

f ′(xk)
.

This iteration converges quadratically, and so, roughly speaking the number of
correct digits obtained doubles with every iteration.

For n = 1, since(
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f

)′′

= −−f 2f ′′ + 2f(f ′)2

f 4
=

2(f ′)2 − ff ′′

f 3

the algorithm is:

xk+1 = xk −
2f(xk)f

′(xk)

2(f ′(xk))2 − f(xk)f ′′(xk)
.

One can show that this iteration has cubic convergence. This means that the
number of correct digits obtained roughly triples with every iteration.

One can in principle continue in this fashion to obtain iterative formulas that ex-
hibit quartic and higher convergences. However the iteration formula then involves
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higher order derivatives of f(x) and thus becomes more and more complicated and
requires more and more time to compute per step. The optimal value of n is dif-
ficult to find, but must depend on how easy it is to compute the function and its
various derivatives. On machines where the machine ε is about 10−16, it does not
make too much sense to use algorithms that have convergence rates higher than 3
or 4 because one very quickly encounters the problem with limited precision.
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