Interpolation of Parametric Curves using Cubic Spline

The curve as shown here cannot be expressed as a function of one coordinate variable in terms of the other. Therefore none of the techniques we have developed can be used to interpolate curves of this general form.

A good mathematical treatment is to describe such a curve parametrically by a parameter t on some interval $\left[t_{0}, t_{N}\right]$. There must be a pair of functions $x(t)$ and $y(t)$ so that the curve is given by $(x(t), y(t))$ as t varies from t_{0} to t_{N}.

The interpolation problem associated with these parametric curves can be handled as follows. Supposed that we are given $N+1$ data points:

i	0	1	\cdots	$N-1$
t_{i}	t_{0}	t_{1}	\cdots	t_{N}
x_{i}	x_{0}	x_{1}	\cdots	x_{N}
y_{i}	y_{0}	y_{1}	\cdots	y_{N}

then we want to find interpolating functions $x(t)$ and $y(t)$ so that

$$
x\left(t_{i}\right)=x_{i} . \quad y\left(t_{i}\right)=y_{i}, \quad i=0, \cdots, N-1 .
$$

Thus we have to interpolate the data points $\left(x_{i}, t_{i}\right)$ for $i=0, \cdots, N-1$, and also the data points $\left(y_{i}, t_{i}\right)$ for $i=0, \cdots, N-1$.

For the curve given above, our result using cubic spline interpolation is shown in the following figure.

