
Fourier Integrals and the Discrete Fourier Transform

Our exposition follows that in ”Numerical Recipes in C - The Art of Scientific Computing”
by W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 2nd edition, Cambridge
University press, 1992.

Fourier Integrals
Let h(t) be a time-dependent signal. The following weighted integral over time t is the Fourier

transform of h(t):

H(f) =
∫ ∞

−∞
h(t)e−2πiftdt,

with frequency f ∈ (−∞∞). The inverse Fourier transform is

h(t) =
∫ ∞

−∞
H(f)e2πiftdf,

Alternate definition has the sign of i reversed in the above expressions. This choice of sign
affect the definition of the discrete Fourier transform which will be introduced later. Our sign
convention here agrees with that in Heath’s book, and with Matlab.

If the Fourier transform of g(t) is G(f), then the convolution of g and h is defined to be the
following function of t:

g ∗ h =
∫ ∞

−∞
g(τ) h(t− τ)dτ =

∫ ∞

−∞
h(τ) g(t− τ) = h ∗ g.

The total power carried by the signal is

P =
∫ ∞

−∞
|h(t)|2dt =

∫ ∞

−∞
|H(f)|2df.

Fourier Transform of Discretely Sampled Data
In reality we often cannot record the signal h(t) continuously. We can only sample it discretely.

Very often the signal is sampled at evenly spaced intervals of time ∆. The sequence of sampled
values is given by:

hn = h(n∆), n = · · · ,−2,−1, 0, 1, 2, · · · .

The sample rate, defined as the number of samples recorded per unit time, is given by ∆−1. The
Nyquist critical frequency is defined by

fc =
1

2∆
.

The Nyquist critical frequency plays a very crucial role in discrete Fourier transform because of
the sampling theorem and the effects of aliasing, as we will discuss next.

Sampling Theorem
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If a continuous function h(t) sampled at time interval ∆ happens to be bandwidth limited to
frequencies bounded by fc in magnitude, i.e. H(f) = 0 for |f | ≥ fc, then the function h(t) is
completely determined by the sampled points, hn. The entire continuous function h(t) can be
constructed from hn explicitly by the following formula:

h(t) = ∆
∞∑

n=−∞
hn

sin [2πfc(t− n∆)]
π(t− n∆)

.

Thus the entire information content of a bandwidth limited signal can be recorded by sampling
it at a rate ∆−1 = 2fc.

To an extend, most signals are bandwidth limited. Passing a signal through an amplifier often
causes it to be bandwidth limited since amplifiers often cannot respond to the signal when the
frequency is sufficiently high (the electrons in the device simply cannot move that fast).

Effects of Eliasing
The very act of discretely sampling a continuous function that is not bandwidth limited to less

than fc spuriously moves (falsely translates) the spectral density of any frequency components
outside [−fc fc] into that range. This phenomenon is called aliasing.

Note that 2 separate signals e2πif1t and e2πif2t whose frequencies differ by a multiple of ∆−1

give exactly the same samples if data are recorded at time interval ∆. To see that, let us assume
that f2 = f1 + k/∆ and t = n∆. Thus

e−2πif2t = e−2πi(f1+k/∆)t = e−2πi(f1+k/∆)n∆ = e−2πif1n∆ = e−2πif1t.

Discrete Fourier Transform
Suppose we have N consecutively sampled values

hk = h(tk) = h(k∆), k = 0, 1, · · · , N − 1,

thus the sampling interval is ∆. To simplify out discussion, we assume that N is even. We want
to estimate the Fourier transform at N discrete values in [−fc fc]. The frequency points are then
given by

fm =
m

N∆
, m = −N

2
, · · · ,−1, 0, 1, · · · ,

N

2
.

We approximate the Fourier integral by a Riemann sum:

H(fm) =
∫ ∞

−∞
h(t) e−2πifmtdt =

N−1∑
k=0

h(tk)e−2πifmtk∆ = ∆
N−1∑
k=0

hke−2πi m
N∆ k∆ = ∆Hm,

where

Hm =
N−1∑
k=0

hke−2πimk/N

is the discrete Fourier transform of the sampled data.
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Note that Hm is periodic in m with period N because

Hm+N =
N−1∑
k=0

hke−2πi(m+N)k/N =
N−1∑
k=0

hke−2πimk/N = Hm.

Therefore we see that
H−N

2
= H−N

2 +N = HN
2
,

and so there are exactly N independent Fourier components (barring any symmetries that the
original signal may have).

The inverse Fourier transform is given by

hk =
1
N

N−1∑
m=0

Hme2πimk/N .

Using exactly the argument, we can easily see that hk must also be period in k with period N .
This is true even if the original signal may not be periodic in the first place.

It is customary to shift the range for m from

m = −N

2
, · · · ,−1, 0, 1, · · · ,

N

2
− 1,

N

2

to
m = 0, 1, 2, · · · , N − 1,

to agree with the usual definition of the discrete Fourier transform and its inverse transform.
This is done by taking the first N/2 element of the original sequence m = −N

2 , · · · ,−1 and
adding N to each element to obtain m = N

2 , · · · , N − 1, which is then placed at the end of the
original sequence. The Nyquist frequency then corresponds to m = N/2.

The discrete version of Parseval’s theorem is

N−1∑
k=0

|hn|2 =
1
N

N−1∑
m=0

|Hm|2.
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