SOLUTION FOR PROBLEM 5 OF THE MOCK
EXAMINATION

Problem 5 (involving linear systems and linear least-squares)

Given a 3 X 2 matrix

and a 3 x 1 vector

we want to solve the linear least-squares problem

Ax=Db
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1. The system of normal equations for this problem is

for the unknown vector

ATAx = A'b.
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The set of normal equations is therefore given by
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2. Next we solve the above normal equations using Gaussian elimination. Thus
we want to replace the second row by

(row2)—§§><(row1)—>{0 q2}.

The second element of vector b must also be transformed exactly the same
way:

(element 2) — ];Z x (element 1) — gby + 7bs — rbs = qby.

We have now transformed the system to upper triangular form
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This can be solved by back-substitution:

¢’y = qby

and so xy = %1. Substituting this into the first equation gives
b
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from which we have z; = % — %. Thus the solution is
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3. Next we want to solve the linear least-squares problem using the Householder
QR factorization. First let us work on the first column of A, which we denote
by u
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The Euclidean norm of that vector is clearly given by p. Since the first
element of u is zero, to obtain « in Heath’s book, the overall sign for « really
does not matter (no cancellation can occur either way). So we choose a = p.
The vector in Householder’s matrix is then given by
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Recall that the overall scale for vector v is irrelevant, so we can drop p and
let
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Recall that if v is the vector defining the Householder matrix, and if u is a
column of A that we want this Householder transformation to operate on,

then
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Note that ||v1]|3 = 2. By design, using this v; in defining the Householder

p
matrix transforms the first column of A to | 0 |, so we can simply skip the

0
algebra. However we need to see how it transforms the second column of A.
So now we let
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We find
viu=r—gq.
Thus
q —1 r
2y —
Hu=|o|_ 20=9] g |_]|g
2
r 1 q
Thus
p T
HA=[00
0 ¢q
We also need to transform vector b. We find
vib = by — by.
Thus
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We now need to repeat the above procedure to eliminant the elements below
the main diagonal of the second column of H;A. To find o we must ignore
the first element of that column. The result is a = g.

The vector in Householder’s matrix is then given by
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Again we can drop the scale factor ¢ to write
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Note that ||vs]|3 = 2.
So letting
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and so
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Therefore we have
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From this equation we identify
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We also need to transform the vector H;b. We find
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Thus
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Therefore the solution of the linear least-squares problem obeys the equation
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This can be solved by back-substitution:

qre = by
and so xo = %1. Substituting this into the first equation gives
b
by + 7,‘51 = b37

from which we have x; = %3 - %. Thus the solution is
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We see that the solution is exactly the same as what we obtained before by
solving the normal equations.
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We can also calculate the residual vector, since
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