ASSIGNMENT 5 - Solution

b

Problem 5-Solution

1. If each resistor has a resistance of 1Ω, and the constant voltage sources are given by $v_{1}^{s}=v_{4}^{s}=15 \mathrm{~V}$, we can solve the 4 by 4 linear system

$$
\begin{equation*}
\mathbf{R i}=\mathbf{v}^{s} \tag{1}
\end{equation*}
$$

where

$$
\mathbf{v}=\left[\begin{array}{c}
15 \tag{2}\\
0 \\
0 \\
15
\end{array}\right]
$$

using LU-factorization without pivoting solve for the current to get

$$
\mathbf{i}=\left[\begin{array}{c}
11 \tag{3}\\
7 \\
10 \\
12
\end{array}\right]
$$

in amperes.
2. Next modify the circuit so that r_{14} has a new value of 6Ω while everything else remains unchanged. That means that r_{14} is being increased by 5Ω, and so

$$
\mathbf{R} \rightarrow \mathbf{R}+\left[\begin{array}{cccc}
5 & 0 & -5 & 0 \\
0 & 0 & 0 & 0 \\
-5 & 0 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

which we want to write as $\mathbf{R}-\mathbf{u v}^{T}$. One possible choice is

$$
\mathbf{u}=\left[\begin{array}{c}
-5 \tag{4}\\
0 \\
5 \\
0
\end{array}\right]
$$

and

$$
\mathbf{v}=\left[\begin{array}{c}
1 \tag{5}\\
0 \\
-1 \\
0
\end{array}\right]
$$

Then we solve

$$
\mathbf{R z}=\mathbf{u}
$$

for \mathbf{z}, and solve

$$
\mathbf{R y}=\mathbf{v}^{s}
$$

for \mathbf{y}. The new current is then given by

$$
\mathbf{i}=\mathbf{y}+\frac{\mathbf{v}^{T} \mathbf{y}}{1-\mathbf{v}^{T} \mathbf{z}} \mathbf{z}
$$

The computed result is

$$
\mathbf{i}=\left[\begin{array}{c}
10.8 \tag{6}\\
7.1 \\
10.5 \\
12.1
\end{array}\right]
$$

3. This result agrees with the solution of the linear system using Matlab's linear system solver with the new \mathbf{R} matrix.
