ASSIGNMENT 7 - Solution

Due April 1, 2004 (before start of class)

Problem 7: Computer Problem 5.19 on p.252 of Heath - Solution

We use the program NewtonD04.m to find the roots using the typical model parameters of $\gamma = 5$ and $\delta = 1$.

First in order to obtain intermediate results for \mathbf{x} , we need to put back a statement within the loop to display the current results.

This function is called for example by the following statement:

```
x = NewtonD04('fcnCP5p19', 'fcnJCP5p19', [1;2],tol,maxIt,gamma,delta),
```

It turns out that there are a total of 3 roots. We need to experiment with different starting points in order to obtain all three roots. For a starting value of [1; 2] we obtain the result:

1.000000000000000	0.4444444444444	1.2222222222222222	0.95581391856029
2.000000000000000	0.09688162276718	1.01029367241901	0.40707938443742
3.000000000000000	0.00132590955302	0.99988839002829	0.09612057131279
4.0000000000000000000000000000000000000	-0.0000019739698	1.0000003090647	0.00133079800441
5.000000000000000	-0.0000000000001	1.000000000000000	0.0000019980184

Newton method has converged.

х =

-0.0000000000000 1.00000000000000

For a starting value of [1; 2] we obtain the result:

1.000000000000000	0.34285714285714	-1.22857142857143	1.01337987719818		
2.00000000000000	0.04923319690320	-1.01625326692638	0.36234517162769		
3.000000000000000	0.00062990232335	-1.00005249336382	0.05123226823049		
4.000000000000000	0.0000002645241	-0.99999999807133	0.00063205962418		
5.00000000000000	-0.000000000000000	-1.00000000000000	0.0000002652263		
Newton method has converged.					

х =

-0.00000000000000

-1.000000000000000

Finally, for a starting value of [1; 2] we obtain the result:

1.000000000000000	4.000000000000000	0.50000000000000	2.06155281280883		
2.00000000000000	4.000000000000000	0.25000000000000	0.250000000000000		
3.00000000000000	3.75000000000000	0.25000000000000	0.25000000000000		
4.00000000000000	3.75000000000000	0.25000000000000	0		
Newton method has converged.					
v =					

- х
 - 3.75000000000000
 - 0.25000000000000