
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

A Brief MATLAB Tutorial

K. Ming Leung

Abstract: We present a brief MATLAB tutorial cov-
ering only the bare-minimum that a beginner needs to
know in order to start writing programs in MATLAB.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: January 27, 2004

mailto:mleung@poly.edu

Table of Contents
1. Introduction: What is MATLAB?
2. The MATLAB System

2.1. The Development Environment
• Starting and quitting MATLAB •MATLAB desktop •MAT-
LAB desktop tools

2.2. The MATLAB Programming Language
• Entering Matrices • sum, transpose, and diag • Subscripts
• The Colon Operator • The magic Function • Expressions
• Numbers • Functions • Examples of Expressions • Gener-
ating Matrices • M-Files • Linear Algebra • Arrays • Build-
ing Matrices and Tables • Scalar Expansion • Logical Sub-
scripting • The find Function • Controlling Command Win-
dow Input and Output • Suppressing Output • Entering
Long Statements • Vectorization

2.3. MATLAB Graphics
• Simple graphs • Multiple Data Sets in One Graph

Section 1: Introduction: What is MATLAB? 3

1. Introduction: What is MATLAB?

MATLAB
1. integrates computation, visualization, and programming in an

easy-to-use environment for the purpose of technical computing.

2. is an interactive system whose basic data element is an array
that does not require dimensioning.

3. incorporates many heavy-duty mathematical libraries such as
the LAPACK and BLAS for matrix computation.

4. features a family of add-on application-specific solutions called
toolboxes which consist of comprehensive collections of MAT-
LAB functions (M-files) that extend the MATLAB environment.

2. The MATLAB System

The MATLAB system consists of the following five main parts.

1. The Development Environment is the set of tools and facilities
that help you use MATLAB functions and files. Many of these

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 4

tools are graphical user interfaces. It includes the MATLAB
desktop and Command Window, a command history, an editor
and debugger, and browsers for viewing help, the workspace,
files, and the search path.

2. The MATLAB Programming Language is a high-level matrix/array
language with control flow statements, functions, data struc-
tures, input/output, and object-oriented programming features.
It allows one to rapidly create quick and dirty throw-away pro-
grams, as well as complete large and complex application pro-
grams.

3. The MATLAB Mathematical Function Library is a vast collec-
tion of functions ranging from elementary ones like sum, sine,
cosine, and complex arithmetic, to more sophisticated ones like
matrix inverse, matrix eigenvalues, Bessel functions, and fast
Fourier transforms. We will illustrate how to use the mathe-
matical function when we deal with the MATLAB language.

4. MATLAB Graphics provide extensive facilities for displaying
vectors and matrices as graphs, as well as annotating and print-

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 5

ing these graphs. It includes high-level functions for two- and
three-dimensional data visualization, image processing, anima-
tion, and presentation graphics. It also includes low-level func-
tions that allow you to fully customize the appearance of graph-
ics as well as to build your own graphical user interfaces.

5. The MATLAB Application Program Interface (API) is a library
that allows you to write C and Fortran programs that interact
with MATLAB. It includes facilities for calling routines from
MATLAB (dynamic linking), calling MATLAB as a computa-
tional engine, and for reading and writing MAT-files. We will
not cover the API here.

2.1. The Development Environment

You work with MATLAB through its development environment.

• Starting and quitting MATLAB
To start MATLAB, double-click the MATLAB shortcut icon on your
Windows desktop.

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 6

To end your MATLAB session, select Exit MATLAB from the File
menu in the desktop, or close the main MATALAB window or type
quit or exit in the Command Window.

• MATLAB desktop
When you start MATLAB, the MATLAB desktop appears, contain-
ing tools (graphical user interfaces) for managing files, variables, and
applications associated with MATLAB.

You can change the way your desktop looks by opening, closing,
moving, and resizing the tools in it. Use the View menu to open or
close the tools.

You can specify certain characteristics for the desktop tools by
selecting Preferences from the File menu.

• MATLAB desktop tools
MATLAB has many desktop tools. The important ones are

• Command Window

• Editor

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 7

• Help Browser

• Current Directory Browser

• Workspace Browser

The most important tool is the Command Window. The com-
mand line is marked by the >> symbol. This is the place where the
user enters variables and run functions and M-files. Each statement
must be separated from each other by a comma, a semi-colon, or the
return character. Output to the screen is suppressed if a statement is
terminated with a semi-colon, otherwise results of a computation are
displayed in the command window.

For example if the user types

>> radius = 2.3; area = pi*radius^2

the output is displayed in the command window as
area =

16.6190
>>

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 8

where a new command line is shown after the output is displayed.
Here pi is a predefined variable containing the value of pi.

Any input longer than one or two lines should be placed in a file
which you can create using the MATLAB text editor. The file must
end with the .m extension. Such a file is also call a script file. To run
the script file, enter the name of the file (without the .m extension)
on the command line.

Any file you want to run in MATLAB must reside in the current
directory or in a directory that is on the search path. A quick way to
view or change the current directory is by using the Current Directory
field in the desktop toolbar.

2.2. The MATLAB Programming Language

Although MATLAB has other ways of storing both numeric and non-
numeric data, but in the beginning, it is best to think of everything
as a matrix. Special meaning is sometimes attached to 1-by-1 matri-
ces, which are scalars, and to matrices with only one row or column,
which are vectors. MATLAB allows you to work with entire matrices

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 9

quickly and easily.
Other than one- and two-dimensional arrays MATLAB supports

other data structures, such as multidimensional arrays, cell arrays,
character and text data, structures and classes and objects.

It also has the if, elseif, and switch for controlling program
flow and the for and while (but no do-while) for creating loops.
It has practically every thing that any other modern programming
language has. You will need to use the online help system or use the
manual to look up the usages of various MATLAB build-in functions
since the syntax are generally different than in other languages.

• Entering Matrices
The best way for you to get started with MATLAB is to learn how to
handle matrices. Start MATLAB and follow along with each example.
You can enter matrices into MATLAB in several different ways:

Enter an explicit list of elements. Load matrices from external data
files. Generate matrices using built-in functions. Create matrices with
your own functions in M-files.

Start by entering Dürer’s matrix as a list of its elements. You only

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 10

have to follow a few basic conventions: Separate the elements of a row
with blanks or commas. Use a semicolon to indicate the end of each
row. Surround the entire list of elements with square brackets. To
enter Dürer’s matrix, simply type on the command line

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

MATLAB displays the matrix you just entered.
A =

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Once you have entered the matrix, it is automatically remembered in
the MATLAB workspace. You can refer to it simply as A.

• sum, transpose, and diag
You are probably already aware that the special properties of a magic
square have to do with the various ways of summing its elements. If
you take the sum along any row or column, or along either of the two

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 11

main diagonals, you will always get the same number. Let us verify
that using MATLAB. The first statement to try is sum(A) MATLAB
replies with

ans =
34 34 34 34

When you do not specify an output variable, MATLAB uses the vari-
able ans, short for answer, to store the results of a calculation. You
have computed a row vector containing the sums of the columns of
A. Sure enough, each of the columns has the same sum, the magic
sum, 34. How about the row sums? MATLAB has a preference for
working with the columns of a matrix, so the easiest way to get the
row sums is to transpose the matrix, compute the column sums of the
transpose, and then transpose the result. The transpose operation is
denoted by an apostrophe or single quote, ’. It flips a matrix about
its main diagonal and it turns a row vector into a column vector. So
A’ produces

ans =
16 5 9 4

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 12

3 10 6 15
2 11 7 14
13 8 12 1

And
sum(A’)’

produces a column vector containing the row sums
ans =

34
34
34
34

The sum of the elements on the main diagonal is obtained with the
sum and the diag functions. diag(A) produces

ans =
16
10
7
1

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 13

and
sum(diag(A))

produces
ans =

34

The other diagonal, the so-called antidiagonal, is not so important
mathematically, so MATLAB does not have a ready-made function
for it. But a function originally intended for use in graphics, fliplr,
flips a matrix from left to right.

sum(diag(fliplr(A)))

ans =
34

You have verified that matrix A is indeed a magic square.

• Subscripts
The element in row i and column j of A is denoted by A(i,j). For
example, A(4,2) is the number in the fourth row and second column.

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 14

For our magic square, A(4,2) is 15. So to compute the sum of the
elements in the fourth column of A, type

A(1,4) + A(2,4) + A(3,4) + A(4,4)

This produces
ans =

34

but is not the most elegant nor efficient way of summing a single
column.

If you try to use the value of an element outside of the matrix, it
is an error.

t = A(4,5)

Index exceeds matrix dimensions.
On the other hand, if you store a value in an element outside of

the matrix, the size increases to accommodate the newcomer. For
example

X = A;
X(4,5) = 17

gives

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 15

X =
16 3 2 13 0
5 10 11 8 0
9 6 7 12 0
4 15 14 1 17

Notice that all elements which have not been explicitly assigned a
value, take on the default value of zero.

• The Colon Operator
The colon, :, is one of the most important MATLAB operators. It
occurs in several different forms. The expression 1:10 is a row vector
containing the integers from 1 to 10

1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment.
For example,
100:-7:50

is
100 93 86 79 72 65 58 51

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 16

and
0:pi/4:pi

is
0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix.
A(1:k,j) is the first k elements of the jth column of A. So sum(A(1:4,4))
computes the sum of the fourth column. But there is a better way.
The colon by itself refers to all the elements in a row or column of
a matrix and the keyword end refers to the last row or column. So
sum(A(:,end)) computes the sum of the elements in the last column
of A.

ans =
34

Why is the magic sum for a 4-by-4 square equal to 34? If the integers
from 1 to 16 are sorted into four groups with equal sums, that sum
must be sum(1:16)/4 which, of course, is

ans =
34

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 17

• The magic Function
MATLAB actually has a built-in function that creates magic squares
of almost any size. Not surprisingly, this function is named magic.

B = magic(4)
B =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

This matrix is almost the same as the one in the Dürer engraving and
has all the same ”magic” properties; the only difference is that the
two middle columns are exchanged. To make this B into Dürer’s A,
swap the two middle columns.

A = B(:,[1 3 2 4])

This says, for each of the rows of matrix B, reorder the elements in
the order 1, 3, 2, 4.

It produces
A =

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 18

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Why would Dürer go to the trouble of rearranging the columns when
he could have used MATLAB ordering? No doubt he wanted to in-
clude the date of the engraving, 1514, at the bottom of his magic
square.

• Expressions
Like most other programming languages, MATLAB provides mathe-
matical expressions, but unlike most programming languages, these
expressions involve entire matrices. The building blocks of expressions
are variables,numbers, operators and functions. MATLAB does not
require any type declarations or dimension statements. When MAT-
LAB encounters a new variable name, it automatically creates the
variable and allocates the appropriate amount of storage. If the vari-
able already exists, MATLAB changes its contents and, if necessary,
allocates new storage.

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 19

For example,
numStudents = 25

creates a 1-by-1 matrix named numStudents and stores the value 25
in its single element. Variable names consist of a letter, followed by
any number of letters, digits, or underscores. MATLAB uses only the
first 31 characters of a variable name. MATLAB is case sensitive; it
distinguishes between uppercase and lowercase letters. A and a are
not the same variable. To view the values assigned to any variable,
simply enter the variable name.

• Numbers
MATLAB uses conventional decimal notation, with an optional dec-
imal point and leading plus or minus sign, for numbers. Scientific
notation uses the letter e to specify a power-of-ten scale factor. Imag-
inary numbers use either i or j as a suffix. Some examples of legal
numbers are

3 -99 0.0001
9.6397238 1.60210e-20 6.02252e23

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 20

1i -3.14159j 3e5i

All numbers are stored internally using the long format specified
by the IEEE floating-point standard. Floating-point numbers have
a finite precision of roughly 16 significant decimal digits and a finite
range of roughly 10−308 to 10+308.

• Functions
MATLAB provides a large number of standard elementary mathemat-
ical functions, including abs, sqrt, exp, and sin. Taking the square
root or logarithm of a negative number is not an error; the appro-
priate complex result is produced automatically. MATLAB also pro-
vides many more advanced mathematical functions, including Bessel
and gamma functions. Most of these functions accept complex argu-
ments. For a list of the elementary mathematical functions, type help
elfun For a list of more advanced mathematical and matrix functions,
type help specfun help elmat Some of the functions, like sqrt and sin,
are built in. They are part of the MATLAB core so they are very effi-
cient, but the computational details are not readily accessible. Other
functions, like gamma and sinh, are implemented in M-files. You can

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 21

see the code and even modify it if you want. Several special functions
provide values of useful constants.

pi 3.14159265...
i Imaginary unit,

√
−1

j Same as i
eps Floating-point relative precision,
Inf Infinity

NaN Not-a-number

Infinity is generated by dividing a nonzero value by zero, or by
evaluating well defined mathematical expressions that overflow, i.e.,
exceed realmax. Not-a-number is generated by trying to evaluate
expressions like 0/0 or Inf-Inf that do not have well defined mathe-
matical values. The function names are not reserved. It is possible to
overwrite any of them with a new variable, such as eps = 1.e-6 and
then use that value in subsequent calculations. The original function
can be restored with clear eps

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 22

• Examples of Expressions
You have already seen several examples of MATLAB expressions.
Here are a few more examples, and the resulting values.

rho = (1+sqrt(5))/2
rho =

1.6180

a = abs(3+4i)
a =

5

z = sqrt(besselk(4/3,rho-i))
z =

0.3730+ 0.3214i

huge = exp(log(realmax))
huge =

1.7977e+308

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 23

toobig = pi*huge
toobig =

Inf

• Generating Matrices
MATLAB provides four functions that generate basic matrices.

zeros All zeros
ones All ones
rand Uniformly distributed random elements
randn Normally distributed random elements

Here are some examples.
Z = zeros(2,4)
Z =

0 0 0 0
0 0 0 0

F = 5*ones(3,3)

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 24

F =
5 5 5
5 5 5
5 5 5

N = fix(10*rand(1,10))
N =

4 9 4 4 8 5 2 6 8 0

R = randn(4,4)
R =

1.0668 0.2944 -0.6918 -1.4410
0.0593 -1.3362 0.8580 0.5711

-0.0956 0.7143 1.2540 -0.3999
-0.8323 1.6236 -1.5937 0.6900

• M-Files
You can create your own matrices using M-files, which are text files
containing MATLAB code. Use the MATLAB Editor or another text

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 25

editor to create a file containing the same statements you would type
at the MATLAB command line. Save the file under a name that ends
in .m. For example, create a file containing these five lines.

A = [...
16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0];

Store the file under the name magik.m. Then the statement magik
reads the file and creates a variable, A, containing our example matrix.

Concatenation is the process of joining small matrices to make
bigger ones. In fact, you made your first matrix by concatenating its
individual elements. The pair of square brackets, [], is the concate-
nation operator. For an example, start with the 4-by-4 magic square,
A, and form B = [A A+32; A+48 A+16] The result is an 8-by-8 ma-
trix, obtained by joining the four submatrices.

B =
16 3 2 13 48 35 34 45

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 26

5 10 11 8 37 42 43 40
9 6 7 12 41 38 39 44
4 15 14 1 36 47 46 33

64 51 50 61 32 19 18 29
53 58 59 56 21 26 27 24
57 54 55 60 25 22 23 28
52 63 62 49 20 31 30 17

This matrix is halfway to being another magic square. Its elements
are a rearrangement of the integers 1:64. Its column sums are the
correct value for an 8-by-8 magic square. sum(B)

ans =
260 260 260 260 260 260 260 260

But its row sums, sum(B’)’, are not all the same. Further manipula-
tion is necessary to make this a valid 8-by-8 magic square.

Deleting Rows and Columns
You can delete rows and columns from a matrix using just a pair of

square brackets. Start with X = A; Then, to delete the second column
of X, use X(:,2) = []. This changes X to

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 27

X =
16 2 13
5 11 8
9 7 12
4 14 1

If you delete a single element from a matrix, the result is not a matrix
anymore. So, expressions like X(1,2) = [] result in an error. How-
ever, using a single subscript deletes a single element, or sequence of
elements, and reshapes the remaining elements into a row vector.

So
X(2:2:10) = []

results in
X =

16 9 2 7 13 12 1

• Linear Algebra
Informally, the terms matrix and array are often used interchangeably.
More precisely, a matrix is a two-dimensional numeric array that rep-

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 28

resents a linear transformation. The mathematical operations defined
on matrices are the subject of linear algebra. Dürer’s magic square

A =
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

provides several examples that give a taste of MATLAB matrix op-
erations. You have already seen the matrix transpose, A’. Adding a
matrix to its transpose produces a symmetric matrix. A + A’

ans =
32 8 11 17
8 20 17 23
11 17 14 26
17 23 26 2

The multiplication symbol, *, denotes the matrix multiplication in-
volving inner products between rows and columns. Multiplying the
transpose of a matrix by the original matrix also produces a symmet-

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 29

ric matrix. A’*A
ans =

378 212 206 360
212 370 368 206
206 368 370 212
360 206 212 378

The determinant of this particular matrix happens to be zero, indi-
cating that the matrix is singular. d = det(A)

d =
0

The reduced row echelon form of A is not the identity.
R = rref(A)

R =
1 0 0 1
0 1 0 -3
0 0 1 3
0 0 0 0

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 30

Since the matrix is singular, it does not have an inverse. If you try to
compute the inverse with X = inv(A) you will get a warning message
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 1.175530e-017. Roundoff error has prevented
the matrix inversion algorithm from detecting exact singularity. But
the value of rcond, which stands for reciprocal condition estimate,
is on the order of eps, the floating-point relative precision, so the
computed inverse is unlikely to be of much use. The eigenvalues of
the magic square are interesting.

e = eig(A)

e =
34.0000
8.0000
0.0000

-8.0000

One of the eigenvalues is zero, which is another consequence of singu-
larity. The largest eigenvalue is 34, the magic sum. That is because

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 31

the vector of all ones is an eigenvector.
v = ones(4,1)

v =
1
1
1
1

A*v

ans =
34
34
34
34

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 32

• Arrays
When they are taken away from the world of linear algebra, matrices
become two-dimensional numeric arrays. Arithmetic operations on
arrays are done element-by-element. This means that addition and
subtraction are the same for arrays and matrices, but that multiplica-
tive operations are different. MATLAB uses a dot, or decimal point,
as part of the notation for multiplicative array operations. The list of
operators includes

+ Addition
− Subtraction
.∗ Element-by-element multiplication
∗ Matrix multiplication
./ Element-by-element division
.′ Unconjugated array transpose

If the Dürer magic square is multiplied by itself with array mul-
tiplication A.*A the result is an array containing the squares of the
integers from 1 to 16, in an unusual order.

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 33

ans =
256 9 4 169
25 100 121 64
81 36 49 144
16 225 196 1

• Building Matrices and Tables
Array operations are useful for building tables. Suppose n is the
column vector

n = (0:9)’;

Then

pows = [n n.^2 2.^n]

builds a table of squares and powers of 2.
pows =

0 0 1
1 1 2
2 4 4

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 34

3 9 8
4 16 16
5 25 32
6 36 64
7 49 128
8 64 256
9 81 512

The elementary math functions operate on arrays element by element.
So

format short g
x = (1:0.1:2)’;
logs = [x log10(x)]

builds a table of logarithms.
logs =

1.0 0
1.1 0.04139
1.2 0.07918
1.3 0.11394

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 35

1.4 0.14613
1.5 0.17609
1.6 0.20412
1.7 0.23045
1.8 0.25527
1.9 0.27875
2.0 0.30103

• Scalar Expansion
Matrices and scalars can be combined in several different ways. For
example, a scalar is subtracted from a matrix by subtracting it from
each element. The average value of the elements in our magic square
is 8.5, so B = A - 8.5 forms a matrix whose column sums are zero.

B =
7.5 -5.5 -6.5 4.5

-3.5 1.5 2.5 -0.5
0.5 -2.5 -1.5 3.5

-4.5 6.5 5.5 -7.5

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 36

sum(B)

ans =
0 0 0 0

With scalar expansion, MATLAB assigns a specified scalar to all in-
dices in a range. For example, B(1:2,2:3) = 0 zeroes out a portion
of B.

B =
7.5 0 0 4.5
-3.5 0 0 -0.5
0.5 -2.5 -1.5 3.5
-4.5 6.5 5.5 -7.5

• Logical Subscripting
The logical vectors created from logical and relational operations can
be used to reference subarrays.

Suppose X is an ordinary matrix and L is a matrix of the same
size that is the result of some logical operation. Then X(L) specifies
the elements of X where the elements of L are nonzero. This kind of

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 37

subscripting can be done in one step by specifying the logical operation
as the subscripting expression. Suppose you have the following set of
data.

x =
2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

The NaN is a marker for a missing observation, such as a failure to re-
spond to an item on a questionnaire. To remove the missing data with
logical indexing, use finite(x), which is true for all finite numerical
values and false for NaN and Inf.

x = x(finite(x))
x =

2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

Now there is one observation, 5.1, which seems to be very different
from the others. It is an outlier. The following statement removes out-
liers, in this case those elements more than three standard deviations
from the mean.

x = x(abs(x-mean(x)) <= 3*std(x))
x =

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 38

2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

For another example, highlight the location of the prime numbers in
Dürer’s magic square by using logical indexing and scalar expansion
to set the nonprimes.

• The find Function
The find function determines the indices of array elements that meet
a given logical condition. In its simplest form, find returns a column
vector of indices. Transpose that vector to obtain a row vector of in-
dices. For example, k = find(isprime(A))’ picks out the locations,
using one-dimensional indexing, of the primes in the magic square.

k =
2 5 9 10 11 13

Display those primes, as a row vector in the order determined by k,
with A(k)

ans =
5 3 2 11 7 13

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 39

When you use k as a left-hand-side index in an assignment statement,
the matrix structure is preserved.

A(k) = NaN

A =
16 NaN NaN NaN

NaN 10 NaN 8
9 6 NaN 12
4 15 14 1

• Controlling Command Window Input and Output
The format Function can be used to control the appearance of numeric
format of the values displayed by MATLAB. The function affects only
how numbers are displayed, not how MATLAB computes or saves
them. The MATLAB statement is

format choice

where choice should be replaced by one of the following formatting
choices. For example, given a vector x with components of different

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 40

magnitudes
x = [4/3 1.2345e-6]

here are the different format choices, together with the resulting out-
put produced from them

choices
short 1.3333 0.0000

short e 1.3333e+000 1.2345e-006
short g 1.3333 1.2345e-006

long 1.33333333333333 0.00000123450000
long e 1.333333333333333e+000 1.234500000000000e-006
long g 1.33333333333333 1.2345e-006
bank 1.33 0.00
rat 4/3 1/810045
hex 3ff5555555555555 3eb4b6231abfd271

If the largest element of a matrix is larger than 103 or smaller
than 10−3, MATLAB applies a common scale factor for the short and
long formats. In addition to the format functions shown above format

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 41

compact suppresses many of the blank lines that appear in the output.
This lets you view more information on a screen or window. If you
want more control over the output format, use the sprintf and fprintf
functions.

• Suppressing Output
If you simply type a statement and press Return or Enter, MATLAB
automatically displays the results on screen. However, if you end the
line with a semicolon, MATLAB performs the computation but does
not display any output. This is particularly useful when you generate
large matrices. For example, A = magic(100);

• Entering Long Statements
If a statement does not fit on one line, use an ellipsis (three peri-
ods), ..., followed by Return or Enter to indicate that the statement
continues on the next line.

For example,

s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
- 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 42

Blank spaces around the =, +, and - signs are optional, but they
improve readability.

• Vectorization
To obtain the most speed out of MATLAB, it’s important to vectorize
the algorithms in your M-files. Where other programming languages
might use for or DO loops, MATLAB can use vector or matrix oper-
ations. A simple example involves creating a table of logarithms.

x = .01;
for k = 1:10000

y(k) = log10(x);
x = x + .01;

end

A vectorized version of the same code is
x = .01:.01:100;
y = log10(x);

For more complicated code, vectorization options are not always so
obvious. When speed is important, however, you should always look

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 43

for ways to vectorize your algorithms but eliminating loops.

2.3. MATLAB Graphics

MATLAB has extensive facilities for displaying vectors and matrices
as graphs, as well as annotating and printing these graphs.

• Simple graphs
The plot function has different forms, depending on the input argu-
ments. If y is a vector, plot(y) produces a piecewise linear graph of
the elements of y versus the index of the elements of y. If you specify
two vectors as arguments, plot(x,y) produces a graph of y versus
x. For example, these statements use the colon operator to create a
vector of x values ranging from zero to 2π, compute the sine of these
values, and plot the result.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 44

Now label the axes and add a title. The characters
pi create the symbol π.

xlabel(’x = 0:2\pi’)
ylabel(’sin(x)’)
title(’Plot of the Sine Function’,’FontSize’,12)

• Multiple Data Sets in One Graph
Multiple x-y pair arguments create multiple graphs with a single call
to plot. MATLAB automatically cycles through a predefined (but user
settable) list of colors to allow discrimination among sets of data. For
example, these statements plot three related functions of x, each curve
in a separate distinguishing color.

y2 = sin(x-.25);
y3 = sin(x-.5);
plot(x,y,x,y2,x,y3)

The legend command provides an easy way to identify the individual
plots.

legend(’sin(x)’,’sin(x-.25)’,’sin(x-.5)’)

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 45

Most of the attributes of a plot, such as color, line style, line thickness
and font size, can be edited and modified interactively using tools that
are available in the figure window.

Toc JJ II J I Back J Doc Doc I

Section 2: The MATLAB System 46

References

[1] Most the materials here are adopted from MATLAB’s online doc-
umentation, which can be accessed within MATLAB by selecting
MATLAB Help from the Help menu. The documentation can also
be accessed through the MATLAB website.

[2] K. Sigmon and T. A. Davis, MATLAB Primer , Sixth Edition,
Chapman and Hall/CRC, 2002.

[3] D. J. Higham and N. J. Higham, MATLAB Guide, SIAM, 2000.

[4] D. C. Hanselman and B. Littlefield, Mastering MATLAB 6, A
Comprehensive Tutorial and Reference, Prentice-Hall, 2000.

Toc JJ II J I Back J Doc Doc I

http://www.mathworks.com

	Table of Contents
	1 Introduction: What is MATLAB?
	2 The MATLAB System
	2.1 The Development Environment
	• Starting and quitting MATLAB
	• MATLAB desktop
	• MATLAB desktop tools

	2.2 The MATLAB Programming Language
	• Entering Matrices
	• sum, transpose, and diag
	• Subscripts
	• The Colon Operator
	• The magic Function
	• Expressions
	• Numbers
	• Functions
	• Examples of Expressions
	• Generating Matrices
	• M-Files
	• Linear Algebra
	• Arrays
	• Building Matrices and Tables
	• Scalar Expansion
	• Logical Subscripting
	• The find Function
	• Controlling Command Window Input and Output
	• Suppressing Output
	• Entering Long Statements
	• Vectorization

	2.3 MATLAB Graphics
	• Simple graphs
	• Multiple Data Sets in One Graph

