
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Floating-Point Numbers in Digital
Computers

K. Ming Leung

Abstract: We explain how floating-point numbers are
represented and stored in modern digital computers.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: January 27, 2004

mailto:mleung@poly.edu


2

Most quantities in scientific and engineering computing are con-
tinuous and are therefore described by real numbers. Examples are
position, time, temperature and forces. The number of real numbers
within even the smallest interval is uncountably infinite, and there-
fore real numbers cannot be represented exactly on a digital computer.
Instead they are approximated by what are known as floating-point
numbers.

A floating-point number is similar to the way real numbers are
expressed in scientific notation in the decimal system. For exam-
ple the speed of light in vacuum, c, is defined to have the value
c = 2.99792458 × 108 in meters per second. The part containing
2.99792458 is called the mantissa. The dot is the decimal point. The
base (or radix) is 10 and the exponent is 8.

This value can be rewritten in many alternate ways, such as c =
0.299792458×109, c = 0.0299792458×1010, and c = 2997.92458×105.

So the decimal point can be moved that is why these numbers are
called floating-point numbers. When the decimal point floats one unit
to the left, the exponent increases by 1, and when the decimal point
floats one unit to the right, the exponent decreases by 1.

JJ II J I Back J Doc Doc I



3

One can make the floating-point representation of any number,
except 0, unique by requiring the leading digit in the mantissa to be
nonzero and the decimal point to appear always right after the leading
digit. Zero is stored separately. The resulting floating-point system
is then referred to as normalized.

There are good reasons for normalization:
1. representation of each integer is unique
2. no digits wasted on leading zeros
3. additional advantage in binary system: leading digit is always a

1 and therefore need not be stored
The scientific notation to represent a number can be generalized

to bases other than 10. Some useful ones are shown in the following
table.

base name application
2 = 21 binary practically all digital computers
8 = 23 octal old Digital computers

10 decimal HP calculators
16 = 24 hexadecimal PCs and workstations

JJ II J I Back J Doc Doc I



4

In the above example for the number representing the speed of
light, the mantissa has 9 digits and the exponent has 1 digit. In
general a floating-point system is characterized by 4 positive integers

base or radix β
precision p
smallest exponent allowed L
largest exponent allowed U

A floating-point number, x, is represented as

x = ±
(

d0 +
d1

β
+

d2

β2
+ . . . +

dp−1

βp−1

)
βE ,

where for i = 0, 1, . . . , p− 1, di is an integer between 0 and β− 1, and
E is an integer between L and U . The plus or minus signs indicate
the sign of the floating-point number. Some terminologies:

mantissa d0d1 . . . dp−1

exponent E
fractional part d1d2 . . . dp−1

JJ II J I Back J Doc Doc I



5

The following table lists some typical floating-point systems.

System β p L U
IEEE Single-precision 2 24 -126 127
IEEE Double-precision 2 53 -1022 1023

Cray 2 48 -16383 16384
HP Calculator 10 12 -499 499

IBM Mainframes 16 6 -64 64

PCs and workstations typically use the IEEE floating-point sys-
tems.

Clearly a floating-point system can only contain a finite set of dis-
crete numbers. The total number of normalized floating-point num-
bers is:

2(β − 1)βp−1(U − L + 1) + 1.

2 for the 2 possible signs
β − 1 since d0 can be any integer between 1 and β − 1
βp−1 each of the p−1 fractional digit d1d2 . . . dp−1 can be any integer

between 0 and β − 1

JJ II J I Back J Doc Doc I



6

U-L+1 is the total number of different exponents
We add 1 to the product of the above factors since the number 0 is
treated separately.

Out of all those numbers, 2 numbers have important meanings.
The smallest positive normalized floating-point number is called the
underflow level, UFL. UFL must have the smallest normalized man-
tissa of 1.0 . . . 0, and the smallest exponent of L, and so

UFL = βL.

It has a value of

UFL = 2−1022 ≈ 2.23× 10−308,

in IEEE double precision. In MATLAB this number is named realmin.
The largest positive floating-point number is called the overflow

level, OFL. It has a mantissa having the largest value. Therefore the
leading digit as well as remaining ones must have the largest value of
β − 1, i.e. d0 = d1 = . . . = dp−1 = β − 1. The mantissa then has a
value of

β − 1 +
β − 1

b
+

β − 1
b2

+ . . . +
β − 1
bp−1

.

JJ II J I Back J Doc Doc I



7

To see how we can sum up this finite series, we consider a particular
example where β = 10 and p = 5. We see that the series gives

9 +
9
10

+
9

102
+

9
103

+
9

104
= 9.9999.

Notice that by adding 0.0001 to the result, we get 10, which is β.
Written in terms of β and p, we see that 0.0001 = 1/βp−1. The sum
of the series must therefore be given by

β
1

βp−1
=
(

1− 1
βp

)
β.

The OFL must have the largest exponent of U . Therefore we have

OFL =
(

1− 1
βp−1

)
ββU =

(
1− 1

βp

)
βU+1.

In IEEE double precision,

OFL =
(

1− 1
253

)
21024,

which is very slightly less than 21024. An approximate value for the

JJ II J I Back J Doc Doc I



8

OFL is 1.8× 10308.
Ideally a floating-point system should have a large p for high preci-

sion, a large and negative L, so that numbers with very small magni-
tudes can be represented, and a large and positive U so that numbers
with large magnitudes can be represented.

The IEEE double precision floating point standard representation
requires a 64 bit word, which may be represented as numbered from 0
to 63, left to right. The first bit is the sign bit, S, the next eleven bits
are the exponent bits (shifted or biased by 1023), ’E’, and the final
52 bits are the fraction ’F’.

We will now consider in detail a floating-point system, where β =
2, p = 3, L = −1, and U = 1. This is a ”toy” system, so simple that
we can figure out all of its numbers.

First 0 is always present in any floating-point number system.
For every positive floating-point number is a corresponding negative
number. So we can concentrate on getting all the positive floating-
point numbers first and then reverse their signs to get all the negative
floating point numbers.

JJ II J I Back J Doc Doc I



9

Immediately to the right of 0 is the UFL, which is given by

UFL = βL = 2−1 =
1
2

= (0.5)10,

or equivalently by (1.00)2×2−1. This floating-point number is shown
by the red mark in the following diagram. The next floating-point
number (also in red) is (1.01)2 × 2−1. This number has a value
(1.00)2×2−1+(0.01)2×2−1 = UFL+ 1

8 = (0.625)10. The next floating-
point number (also in red) is (1.10)2×2−1 = UFL+2× 1

8 = (0.75)10.
And the next one is (1.11)2 × 2−1 = UFL + 3 × 1

8 = (0.875)10, also
shown in red. The mantissa reaches its highest possible value.

For the next number, the exponent increases by 1 and the mantissa
returns to its smallest normalized value of (1.00)2. The number (in
black) is (1.00)2 × 20 = (1)10. The next number (also in black) is
(1.01)2 × 20 = (1)10 + (0.01)2 × 20 = (1)10 + 1

4 = 1.2510. The next 2
numbers (also in black) are (1.10)2× 20 = (1)10 +2× 1

4 = (1.5)10 and
(1.11)2 × 20 = (1)10 + 3× 1

4 = (1.75)10.
Again the mantissa reaches its highest possible value. For the

next number, once again the exponent has to increase by 1 and the

JJ II J I Back J Doc Doc I



10

mantissa has to return to its smallest normalized value of (1.00)2. The
number (in green) is (1.00)2 × 21 = (2)10. The next 3 numbers (also
in green) are (1.01)2× 21 = (2)10 +(0.01)2× 21 = (2)10 + 1

2 = (2.5)10,
(1.01)2×21 = (2)10 +2× 1

2 = (3)10, and (1.11)2×21 = (2)10 +3× 1
2 =

(3.5)10 = OFL. There is no ordinary floating-point number larger
than OFL.

Therefore this system has a total of 12 positive floating-point num-
bers. Putting a negative sign in front of these numbers gives 12 nega-
tive floating-point numbers. Together with 0, this system has a total
of 25 floating-point numbers. Notice that except for 0, and depends
on how they are grouped (disjoint groups or as overlapping groups),
all the floating-point numbers appear in groups of 4 (= βp−1) or
5 (= βp−1+1). Floating-point numbers are not distributed uniformly,
except for numbers within the same group.

-4 -3 -2 -1 0 1 2 3 46 6

UFL OFL

JJ II J I Back J Doc Doc I



11

In summary, a normalized floating-point system has the following
characteristics.

1. can only represent a total of 2(β−1)βp−1(U−L+1)+1 floating-
point number exactly.

2. these number are discrete (not like the real numbers which are
continuous)

3. these numbers are unevenly spaced except within the same group

4. 0 is always represented (also whole numbers with magnitudes
= βp)

5. the smallest positive normalized floating-point number is UFL
= βL

6. the largest positive floating-point number is OFL =
(
1− 1

βp

)
βU+1

7. most other real numbers are not represented

8. those real numbers that can be represented exactly are called
machine numbers

JJ II J I Back J Doc Doc I



Section 1: Rounding Rules 12

9. Basically all normalized floating-point systems exhibit the same
characteristics. System appears less grainy and less uneven as p
becomes large, L becomes more negative, and U becomes larger

1. Rounding Rules

Most real numbers are non-machine numbers. How can they be
treated? Even if we start with machine numbers, most of the time
operations involving them will result in non-machine numbers. For
example, in our above toy floating-point system, the numbers 2 and
2.5 are machine numbers. However 2 divided by 2.5 gives a true value
of 0.8, but 0.8 is not a machine number. It falls between 2 machine
numbers, 0.75 and 0.875.

If x is a real non-machine number, then it is approximated by a
”nearby” machine number, denoted by fl(x). This process is called
rounding. The error introduced by rounding is called rounding or
roundoff error.

Two commonly used rounding rules are:

chop truncate base-β expansion of x after the (p − 1)st digit. This

JJ II J I Back J Doc Doc I



Section 1: Rounding Rules 13

rule is called ”round toward zero”.

round-to-nearest fl(x) is given by the floating-point number near-
est to x. In case of a tie, use the one whose last stored digit,
the so-called least significant digit (LSD) is even. This rule is
called ”round-to-even”.

Of these two rules, round-to-nearest is more accurate (in the sense
described in the next section) and is the default rounding rule in IEEE
systems. We will consider the round-to-nearest rule here.

Again using the toy floating-point system as an example, we see
that in the calculation 0.75 + 1 = 1.75, all the numbers involved are
machine numbers. The calculation is therefore performed exactly.
We are extremely lucky. On the other hand, the true sum of the
machine numbers 0.875 and 1.5 is 2.375, which lies between the two
consecutive machine numbers, 2 and 2.5. Since 2.375 lies closer to
2.5 than to 2, it is approximated by 2.5. Therefore 0.875 + 1.5 gives
2.5 in this floating-point system. As another example, the true sum
of machine numbers 0.625 and 1 is 1.625. This number lies exactly
between the two consecutive machine numbers, 1.5 and 1.75, which

JJ II J I Back J Doc Doc I



Section 1: Rounding Rules 14

have representations (1.10)2 × 20 and (1.11)2 × 20, respectively. The
round-to-nearest rule therefore picks 1.5 as the answer, since its LSD
is even.

1.1. Machine Precision

Accuracy of a floating-point system is characterized by εmach, referred
to as the machine epsilon, machine precision, or unit roundoff. It is
defined to be the smallest number ε such that

fl(1 + ε) > 1.

Since 1 is a machine number represented by (1.0 . . . 0) × β0, and the
next machine number larger than 1 is (1.0 . . . 01)×β0 = 1+ 1

βp−1 . This
number is larger than 1 by β1−p. Therefore in the round-to-nearest
rule

εmach = β1−p/2.

The machine epsilon is sometimes also defined to be the maximum
possible relative error in representing a nonzero real number x in a

JJ II J I Back J Doc Doc I



Section 1: Rounding Rules 15

floating-point system. That means that

fl(x)− x

x
≤ εmach.

For our toy floating-point system, εmach = 21−3/2 = 0.125. For the
IEEE floating-point system, in single precision εmach = 21−24/2 =
2−24 ≈ 6.0 × 10−8, i.e. about 7 digits of precision, and in double
precision εmach = 21−53/2 = 2−53 ≈ 1.1× 10−16, i.e. about 16 digits
of precision. Note that εmach is much larger than the UFL in all
practical floating-point number system.

MATLAB defines eps as the distance between 1 and the next
larger floating-point number. That distance is β1−p. Thus we see
that eps is 2εmach. Thus we see that a real number x that is slightly
larger than 1+εmach is represented as fl(x) = 1+eps = 1+2∗εmach,
the next machine number larger than 1. However if x is either equal
to or slightly less than 1 + εmach then it is represented as fl(x) = 1.

On the other hand, the next machine number less than 1 is 1 −
eps/2 = 1 − εmach. Thus a real number x that is slightly less than
1− εmach/2 is then represented as fl(x) = 1− eps/2 = 1− εmach, the

JJ II J I Back J Doc Doc I



Section 1: Rounding Rules 16

next machine number smaller than 1. However if x is slightly larger
than or equal to 1− εmach/2, then it is represented as fl(x) = 1.

One thing important to note and to remember is that the maxi-
mum relative error in representing a real number x in a floating-point
system is bounded by the machine epsilon∣∣∣∣fl(x)− x

x

∣∣∣∣ < εmach.

1.2. Subnormals and Gradual Underflow

Normalization causes the floating-point system to have no numbers
other than 0 in the interval [−UFL, UFL]. Thus any number with
a magnitude less than UFL/2 = βL/2 at any step in a calculation is
set to 0. Most of the floating-point systems, including the single- and
double-precision IEEE systems, attempt to fill in the above interval
by allowing subnormal or denormalized floating-point numbers. These
numbers are introduced by relaxing the normalization requirement by
adding the following statement.

In the mantissa, the leading digits can be zero if the exponent is

JJ II J I Back J Doc Doc I



Section 1: Rounding Rules 17

at its lowest value L.
These subnormal floating-point numbers added to the system all

have the form
(0.d1d2 . . . dp−1)× βL,

where d1, d2 . . . dp−1 are integers between 0 and β − 1. (The number
for which all the fractional digits are zero is clearly the floating-point
number 0, which has been considered before and is not a subnormal
number.) Since there are p−1 fractional digits and each digit can take
on β possible values, thus by allowing for subnormals we add a total
of 2(βp−1 − 1) floating-points to the system. The factor of 2 comes
form the 2 possible signs, and we subtract 1 because 0 was considered
already.

The smallest subnormal floating-point number is

(0.0 . . . 01)β × βL =
1

βp−1
βL = βL−p+1.

Now any floating-point number whose magnitude is less than or equal
to βL−p+1/2 (rather than UFL/2 = βL/2) is then set to 0. This
augmented system is said to exhibit gradual underflow.

JJ II J I Back J Doc Doc I



Section 1: Rounding Rules 18

Note that εmach still has the same value as before. Subnormal
numbers extend the range of magnitudes representable but they have
less precision than the normalized ones since 1 or more of their leading
digits are zero.

For our toy floating-point system, since β = 2 and p = 3, the total
number of subnormals is 2(βp−1−1) = 6. Thus subnormals add three
numbers on each side of the origin. The three positive ones are

(0.01)2 × 2−1 =
1
8

(0.10)2 × 2−1 =
2
8

=
1
4

(0.11)2 × 2−1 =
3
8

The floating-point numbers of the entire floating-point system are
shown in the following diagram. The subnormals are shown in yellow.

JJ II J I Back J Doc Doc I



Section 1: Rounding Rules 19

-4 -3 -2 -1 0 1 2 3 46 6

UFL OFL

We will now consider examples with subnormals in IEEE double-
precision systems. We define two normalized real numbers a = 1×1015

and b = 1×10−307. Clearly both numbers lie between the UFL and the
OFL, and therefore have full precision given by εmach. Notice that
b is very small, only slightly larger than the UFL (≈ 2.23 × 10−308).
We now compute the ratio r = b/a using for example MATLAB. The
result to 16 digit precision is r = 9.881312916824931× 10−323, which
is smaller than the UFL and is clearly a subnormal. This number
cannot have full precision. In fact the correct answer for r is (1 ×
1015) × (1 × 10−307) = 1 × 10−322. The relative error for r is 0.012,
and that is much much larger than εmach.

The smallest subnormal is s = UFL/(252), which has a value of
4.940656458412465 × 10−324. Any number whose magnitude is less
than of equal to half of s is rounded to zero. One can check to see

JJ II J I Back J Doc Doc I



Section 2: Exceptional Values 20

that s/1.99999 gives s again, and s/2 gives 0.

2. Exceptional Values

IEEE floating-point standard provides special values to indicate two
exceptional situations:

• Inf, which stands for infinity, results from dividing a finite num-
ber by zero, such as 1/0

• NaN, which stands for not-a-number, results from undefined or
indeterminate operations such as 0/0, 0 ∗∞, or ∞/∞

Inf and NaN are implemented in IEEE arithmetic through special
reserved values of the exponent field

Some languages like MATLAB can sensibly handle and propagate
these exceptional values through a calculation. For example, Inf - 1
= Inf, 5* NaN +7 = NaN. Data such as

x 1 2 3 4 5 6
y 0.25 0.37 NaN 0.46 0.32 0.21

can be plotted in MAT-

JJ II J I Back J Doc Doc I



Section 2: Exceptional Values 21

LAB. The third data point is omitted in the plot, with a warning about
having a NaN in the data.

2.1. Floating-Point Arithmetic

Addition or subtraction: The exponents of two floating-point numbers
must be made to match by shifting the mantissas before they can be
added or subtracted. But shifting the mantissa may cause loss of some
and possibly even all the digits of the smaller number.

Multiplication: Product of two p-digit mantissas contains up to
2p digits, so result may not be representable

Division: Quotient of two p-digit mantissas may contain more than
p digits, such as nonterminating binary expansion of 1/10

Result of floating-point arithmetic operation may differ from the
result of the corresponding real arithmetic operation on the same
operands.

JJ II J I Back J Doc Doc I



Section 2: Exceptional Values 22

2.2. Example: Floating-Point Arithmetic

Assume we are using a floating-point system where β = 10, p = 6. Let
x = 1.92403×102, y = 6.35782×10−1, floating-point addition gives the
true result 1.92403× 102 +0.00635782× 102 = 1.93038782× 102. But
the floating-point system has only a precision of p = 6, therefore the
result is 1.93039×102, assuming rounding to nearest. The calculation
was done by shifting the decimal point in the mantissa of the smaller
number so that its exponent matches with that of the larger number.

We can also do the calculation by shifting the decimal point of the
larger number so that its exponent matches with that of the smaller
number. This gives the true result 1924.03×10−1 +6.35782×10−1 =
1930.38782 × 10−1. Rounding to nearest then gives the same result
as the previous calculation 1.93039× 102.

Notice that the last two digits of y do not affect the final result,
and with even smaller exponent, y could have had no effect on the
result at all.

Multiplication gives the true result x ∗ y = 1.22326556549 × 102.
Rounding to nearest then gives the floating-point multiplication value

JJ II J I Back J Doc Doc I



Section 2: Exceptional Values 23

of 1.22326×102. Notice that half of the digits of the true product are
discarded.

Division is similar to multiplication except that the result of a
division by two machine numbers may not be a machine number.
Foe example, 1 is a machine number represented by (1.00 . . . 0)ββ0,
and 10 is a machine number represented by (1.010 . . . 0)ββ3. But 1
divided by 10 is 0.1 and it is not a machine number. In fact it has a
non-terminating (repeating) representation (1.10011001100 . . .)ββ−4,
which is the counterpart of repeating decimals in a decimal system.

Real result may also fail to be representable because its exponent
is beyond available range.

Over flow is usually more serious than under flow because there is
no good approximation to arbitrarily large magnitudes in a floating-
point system, whereas zero is often reasonable approximation for ar-
bitrarily small magnitudes.

On many computer systems over flow is fatal, but an under flow
may be silently set to zero.

Ideally, x flop y = (x op y), i.e., floating point arithmetic opera-
tions produce correctly rounded results. Computers satisfying IEEE

JJ II J I Back J Doc Doc I



Section 3: Cancellation 24

floating-point standard achieve this ideal as long as x op y is within
range of floating-point system. But some familiar laws of real arith-
metic not necessarily valid in floating-point system. Floating-point
addition and multiplication commutative but not associative.

Example: if ε is positive floating-point number slightly smaller
than εmach, (1 + ε) + ε = 1; but 1 + (ε + ε) > 1.

3. Cancellation

Subtraction between two p-digit numbers having the same sign and
magnitudes differing by less than a factor of 2, the leading digit(s)
will cancel. The result will have fewer number of significant digits,
although it is usually exactly representable.

Cancellation loses the most significant (leading) bit(s) and is there-
fore much worst than rounding, this loses the least significant (trail-
ing) bit(s).

Again assume we are using a floating-point system where β =
10, p = 6. Let x = 1.92403 × 102, z = 1.92275 × 102, floating-
point difference of these numbers gives the true result 0.00128× 102,

JJ II J I Back J Doc Doc I



Section 3: Cancellation 25

which has only 3 significant digits! It can therefore can be represented
exactly as 1.28000× 10−1.

Despite exactness of result, cancellation often implies serious loss
of information Operands often uncertain due to rounding or other
previous errors, so relative uncertainty in difference may be large Ex-
ample: if ε is positive floating-point number slightly smaller than
εmach,

(1 + ε)− (1− ε) = 1− 1 = 0,

in floating-point arithmetic. The true result of the overall computa-
tion, 2ε, has been completely lost.

Subtraction itself not at fault: it merely signals loss of information
that had already occurred

Because of cancellation, it is generally a bad idea to compute any
small quantity as the difference of large quantities, since rounding
error is likely to dominate the result.

The total energy, E of helium atom is the sum of kinetic (K.E.)
and potential energies (P.E.), which are computed separately and have
opposite signs, so suffer cancellation.

JJ II J I Back J Doc Doc I



Section 3: Cancellation 26

The following table gives a sequence of values obtained over 18
years. During this span the computed values for the K.E. range from
12.22 to 13.0, a 6.3% variation, and the P.E. range from −14.0 to
−14.84, a 6.0% variation. However the computed values for E range
from −1.0 to −2.44, a 144% variation!

Year K.E. P.E. E = K.E. + P.E.
1971 13.0 -14.0 -1.0
1977 12.76 -14.02 -1.26
1980 12.22 -14.35 -2.13
1985 12.28 -14.65 -2.37
1988 12.40 -14.84 -2.44

3.1. Example: Quadratic Formula

The two roots of the quadratic equation

ax2 + bx + c = 0,

JJ II J I Back J Doc Doc I



Section 3: Cancellation 27

are given by

x1,2 =
−b±

√
b2 − 4ac

2a
.

Naive use of the above quadratic formula can suffer over flow, or under
flow, or severe cancellation.

Rescaling coefficients can help avoid over flow and harmful under
flow.

Cancellation inside the square root cannot be easily avoided with-
out using higher precision arithmetic.

Cancellation between −b and the square root can be avoided by
computing one root using the following alternative formula:

x1,2 =

(
−b±

√
b2 − 4ac

2a

)(
−b∓

√
b2 − 4ac

−b∓
√

b2 − 4ac

)

=
b2 − (b2 − 4ac)

2a(−b∓
√

b2 − 4ac)
=

2c

−b∓
√

b2 − 4ac
.

To see how that works, let us be specific and assume that b is
negative. If 4ac is positive and very small compared to b2, then the

JJ II J I Back J Doc Doc I



Section 3: Cancellation 28

square-root is real and is only slightly smaller than −b. Large cancel-
lation is expected in computing x2 using the original formula, but not
for x1. On the other hand, large cancellation is expected in computing
x1 using the alternate formula, but not for x2.

As an example, let us consider a floating-point system where β =
10 and p = 4. We want to compute the roots for a quadratic equa-
tion where a = 0.05010, b = −98.78, and c = 5.015. First, fl(b2) =
fl(9757.488 . . .) = 9757, 4a = 0.2004 without rounding, 4ac = fl(0.2004×
5.015) = 1.005, fl(b2 − 4ac) = 9756, and so fl(

√
b2 − 4ac) = 98.77.

Also fl(2a) = fl(2× 0.0510) = 0.1002, and fl(2c) = fl(2× 5.015) =
10.03 all without rounding.

Using the original formula to compute x1, the numerator is fl(98.78+
98.77) = fl(197.55) = 197.6 (not 197.5), and so x1 = fl(197.6/0.1002) =
1972. This result for x1 is correct to all 4 digits. The numera-
tor for x2 is fl(98.78 − 98.77) = fl(0.0100) = 0.0100, and so x2 =
fl(0.0100/0.1002) = 0.09980. But even the leading digit of this result
for x2 is incorrect.

If we use the alternate formula to compute x1, we have x1 =
fl(10.03/0.010) = 1003. This result is far from being correct. How-

JJ II J I Back J Doc Doc I



Section 3: Cancellation 29

ever for x2, we have x2 = fl(10.03/197.6) = fl(0.0507591) = 0.05076.
The result correct to 4 significant digits is 0.05077.

The above example was made up to bring out the problem asso-
ciated with cancellation. With increasing precision p, b2 has to be
even much larger than 4ac before the problem shows up. In fact in
IEEE double precision, using the above values for a, b and c, the roots
are correctly computed up to about 14 significant digits even if the
”wrong” formula is used.

3.2. Standard Deviation

The mean of a sequence xi, i = 1, 2, . . . n, is given by

x̄ =
1
n

n∑
i=1

xi,

and the standard deviation by

σ =

[
1

n− 1

n∑
i=1

(xi − x̄)2
] 1

2

.

JJ II J I Back J Doc Doc I



Section 3: Cancellation 30

Some people use the mathematically equivalent formula

σ =

[
1

n− 1

(
n∑

i=1

x2
i − nx̄2

)] 1
2

.

to avoid making two passes through the data. Unfortunately, the two
terms in the one-pass formula are usually large and nearly equal and so
the single cancellation error at the end is more damaging numerically
than all of cancellation errors in the two-pass formula combined.

JJ II J I Back J Doc Doc I


	1 Rounding Rules
	1.1 Machine Precision
	1.2 Subnormals and Gradual Underflow

	2 Exceptional Values
	2.1 Floating-Point Arithmetic
	2.2 Example: Floating-Point Arithmetic

	3 Cancellation
	3.1 Example: Quadratic Formula
	3.2 Standard Deviation


