CS3734 MIDTERM EXAMINATION, Spring 2005

1. This is an open-book examination. Only the official textbook (or hard-copies of the book), my lecture notes and homework solutions are allowed.
2. No calculators or computers of any kind allowed.
3. Put all your answers in the blue-book(s).
4. Please note that the following problems have different weights.

Problem 1 [30 pts]

What does each of the following three programs do? How many lines of output does each program produce? What are the last two values of x printed? (No need to give numerical values. An answer such as $3^{-1.98}$ is fine.)

```
% program 1
x = 1;
while 1+x > 1
    x = x/2;
    disp(x);
end
% program 2
x = 1;
while x+x > x
    x = 2*x;
    disp(x);
end
% program 3
x = 1;
while x+x > x
    x = x/2;
    disp(x);
end
```


Problem 2 [50 pts]

1. Use Gaussian elimination without pivoting to solve the linear system

$$
\mathbf{A x}=\mathbf{b}
$$

where

$$
\mathbf{A}=\left[\begin{array}{cc}
\epsilon & 1 \\
1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
1+\epsilon \\
2
\end{array}\right] \quad \text { and } \quad 0 \leq \epsilon \leq \epsilon_{\operatorname{mach}} / 4
$$

Give the multiplier and matrices \mathbf{L} and \mathbf{U} in terms of ϵ. Show how the solution is obtained from \mathbf{L} and \mathbf{U}.
2. Repeat part 1 using Gaussian elimination with partial row pivoting. Explain the differences with the results obtain in part 1.

Problem 3 [20 pts]

Let \mathbf{x} be the solution to the linear least squares problem $\mathbf{A x}=\mathbf{b}$, where

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]
$$

Let $\mathbf{r}=\mathbf{b}-\mathbf{A x}$ be the corresponding residual vector. Which of the following three vectors is a possible value for \mathbf{r} ? Why?

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{r}
-1 \\
-1 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{r}
-1 \\
1 \\
1 \\
-1
\end{array}\right]
$$

. Hint: There is no need to actually find the solution \mathbf{x} in order to answer this question. So we do not need to specify \mathbf{b} either.

