
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Matrices, Vector-Spaces and
Information Retrieval

K. Ming Leung

Abstract: Recently developed information retrieval
technologies are based on the concept of a vector space.
Techniques from linear algebra can be used to manage
and index large text collections.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: April 14, 2005

mailto:mleung@poly.edu


Table of Contents
1. Introduction
2. Challenges in Indexing Large Collection of Information
3. Vector Space Model

3.1. A Vector Space Formulation of Information
3.2. A Simple Example

4. The QR Factorization
4.1. Identifying a Basis for the Column Space
4.2. Geometry of the Vector Space Model

5. The Low-Rank Approximation
6. The Singular Value Decomposition
7. The Reduced-Rank Vector Space Model
8. Term-Term Comparison
9. Other Techniques that Really make IR Work

9.1. Relevance Feedback
9.2. Managing Dynamic Collections
9.3. Downdating
9.4. Sparsity



Section 1: Introduction 3

1. Introduction

Two recommended sources of background material on IR systems are
the textbooks by Frakes and Baeza-Yates[1] and Kowalski[2]. Both
of these books are used in undergraduate and graduate courses in IR,
and both provide good references on the design and performance of
IR systems.

Recently developed information retrieval (IR)[3] technologies are
based on the concept of a vector space. Data are modeled as a matrix,
and a user’s query of the database is represented as a vector. Rele-
vant documents in the database are then identified via simple vector
operations. Orthogonal factorizations of the matrix provide mecha-
nisms for handling uncertainty in the database itself. Mathematical
techniques from linear algebra can be used to manage and index large
text collections.

2. Challenges in Indexing Large Collection of Infor-
mation

A. Capacity or scale

Toc JJ II J I Back J Doc Doc I



Section 2: Challenges in Indexing Large Collection of Information 4

1. Periodicals worldwide
i. 160,000 already in print
ii. 12,000 being added per year

2. Books in the U.S. alone:
i. 1.4 million already in print
ii. 60,000 being added per year

B. Indexing Inconsistencies
1 Indexing starts by selecting a list of ”terms” to be used to clas-

sify documents for a given database.
2 Extraction of concepts and keywords from documents for index-

ing is intrinsically a fragile process.
3 An average of 20% disparity in the terms chosen as appropriate

to describe a given document by any 2 different professional
indexers.

4 Selecting such a list by indexer depends on the experience and
opinions of the indexer such as:

i. age
ii. cultural background
iii. education

Toc JJ II J I Back J Doc Doc I



Section 2: Challenges in Indexing Large Collection of Information 5

iv. political orientation
v. language - languages have quite a bit of ambiguities due to

polysemy (words having multiple meanings) and synonymy
(multiple words having the same meaning).

For example in the English language, there are many words that
have multiple meanings (polysemy). Like the word ”bank” can be used
to refer to the place where one goes to deposit or withdraw money.
It is also used in phrases such as bank-shoot in billiard, banking of
a road, or a bank of computer memory. In addition, multiple words
or phrases can have pretty much the same meaning (synonymy). For
example, go to the toilet, use the can, take a leak, take a pee, take a
piss, take a whiz, make water, pass water, spend a penny, micturate,
piddle, puddle, wee-wee, relieve oneself, and empty ones bladder all
mean pretty much the same thing, i.e. to urinate.

Indexing performances are measured by
recall the ratio of the number of relevant documents retrieved to the

total number of documents in the collection.

precision the ratio of the number of relevant documents retrieved to

Toc JJ II J I Back J Doc Doc I



Section 3: Vector Space Model 6

the total number of documents retrieved.
Standardized evaluation of IR began in 1992.

3. Vector Space Model

3.1. A Vector Space Formulation of Information

Suppose we are interested in a collection of documents and have a list
of keywords or terms that we want to use to index or categorize each
of these documents.

In the vector space model, associated with each document is a
vector, called the document vector. Value of each element reflects the
importance of a term in representing the semantics of the document.
Typically the value is a function of the frequency with which the term
appears in the document.

A database containing d documents described by t terms is rep-
resented as t × d term-by-document matrix, A. The d vectors rep-
resenting the d document form the columns of A. The rows are the
term vectors. Matrix element aij is the weighted frequency at which

Toc JJ II J I Back J Doc Doc I



Section 3: Vector Space Model 7

term i appears in document j.
The semantic content of the database is entirely contained in the

column space of A. Geometric relationship between document vectors
is used to model similarities and differences in content. Term vectors
are compared geometrically to identity similarities and differences in
term usage.

Since a document generally uses a small subset of the entire dictio-
nary of terms generated for the db, each document vector has many
zeroes (sparse).

A user queries the db to find relevant documents. The query is
represented by a t×1 vector, q, just like each document vectors, with
entries weighted according to the importance of the corresponding
term in the query.

Query matching is finding document most similar (closest in some
geometric sense) in use and weighting of terms.

A common measure of closeness is obtained from the cosine of the
angle between the query and the document vectors. If matrix A has

Toc JJ II J I Back J Doc Doc I



Section 3: Vector Space Model 8

columns, aj , j = 1, 2, · · · , d,

cos θj =
aT

j q
‖aj‖2‖q‖2

.

Note that ‖aj‖2 need to be computed only once for any given db.
Also multiplying q or aj but a constant does not change the value of
the value of cos θj .

The larger cos θj is the more similar are the query and the jth
document vector.

3.2. A Simple Example

Let us consider a very simple example to illustrate the basic ideas.
Suppose we are interested in books on the recipes for baking bread
and pastries. We assume that we have a total of 6 terms to be used
to classify these books. The terms are:

Toc JJ II J I Back J Doc Doc I



Section 3: Vector Space Model 9

t Terms
1 bak(e,ing)
2 recipe(s)
3 bread(s)
4 cake(s)
5 pastr(y,ies)
6 pie(s)

We are only interested in the root of each of these terms, so that
for example the words bake and baking have the same root. Ways
to strip away unnecessary endings of a given word to extract out the
root are available and we assume that they have been used here.

Next we assume that our collection of books has a total of 5 books.
For the sake of simplicity (so that we do not need to show the entire
text of each book), we assume that the semantic content of these
books is captured by their respective titles. Their titles are:

Toc JJ II J I Back J Doc Doc I



Section 3: Vector Space Model 10

d Documents (Titles)
1 How to Bake Bread without Recipes
2 The Classic Art of Viennese Pastry
3 Numerical Recipes: The Art of Scientific Computing
4 Breads, Pastries, Pies and Cakes: Quality Baking Recipes
5 Pastry: A Book of Best French Recipes

Therefore we have d = 5 and t = 6. Normally d is much much
larger than t. The t× d term-by-document matrix before normaliza-
tion has element âij given by the number of times term i appears in
the document-title j. We find that

Â =


1 0 0 1 0
1 0 1 1 1
1 0 0 1 0
0 0 0 1 0
0 1 0 1 1
0 0 0 1 0

 .

After normalizing each columns using the Euclidean norm, the
term-by-document matrix is given to 4 significant figures by

Toc JJ II J I Back J Doc Doc I



Section 3: Vector Space Model 11

A =


0.5774 0 0 0.4082 0
0.5774 0 1 0.4082 0.7071
0.5774 0 0 0.4082 0

0 0 0 0.4082 0
0 1 0 0.4082 0.7071
0 0 0 0.4082 0

 .

Now for example a user initiates a search for books about baking
bread. The query vector is then given by

q(1) =


1
0
1
0
0
0

 .

We compute cos θj between q(1) and aj , j = 1, 2, · · · , d. The jth
document is returned as relevant to the query only if cos θj is greater
than a certain threshold value. Typically a stringent cutoff value like

Toc JJ II J I Back J Doc Doc I



Section 3: Vector Space Model 12

0.9 is used. In this simple example, we will use 0.5.
We find that

cos θ(1) = [0.8165 0 0 0.5774 0],

and thus the first and the fourth books are returned.
Next if the user simply requested books about baking, then the

query vector is

q(2) =


1
0
0
0
0
0

 ,

and the resulting cosines are

cos θ(2) = [0.5774 0 0 0.4082 0].

Thus only the first book is returned this time. The interesting conse-
quence is that the fourth book, which is in fact a more comprehensive
reference book about baking, is not returned as relevant!

Toc JJ II J I Back J Doc Doc I



Section 4: The QR Factorization 13

Such failures can be alleviated by replacing A by a low-rank ap-
proximation to remove noise and uncertainties from the db represen-
tation.

4. The QR Factorization

The QR factorization can be used to identify and remove redundant
information in the matrix representation of the db. Notice that Â
does not have a rank of 5, rather its rank is 4 since column 5 is the
sum of columns 2 and 3.

Even greater dependence can be expected in practice because
1. db of library materials can contain different editions of a book

2. db of Internet sites can contain a multitude of mirrors of the
same web page

3. a db can easily have dependencies among it columns. For ex-
ample, binary vectors representing documents ”applied linear
algebra” and ”computer graphics” sum to the binary vector rep-
resenting ”linear algebra applied to computer graphics”. Thus

Toc JJ II J I Back J Doc Doc I



Section 4: The QR Factorization 14

a db containing all three documents would have dependencies
among them its columns.

4.1. Identifying a Basis for the Column Space

The QR factorization of A is

A = QR,

where Q is a t× t orthogonal matrix and R is a t×d upper triangular
matrix. Since the jth column of A

A.j =
t∑

k=1

Q.kRkj = Q.1R1j + · · ·+ Q.tRtj ,

and Q.k is the kth column of Q, therefore the jth column of A is a
linear combination of the columns of Q. We also recall that the rank
of A, rA, is equal to the rank of R, which in turn is equal to the rank
of RA (=4 here), where RA is the top nonzero part of R.

Toc JJ II J I Back J Doc Doc I



Section 4: The QR Factorization 15

In our example, we have

Q = [QAQ⊥
A]

=


−0.5774 0 −0.4082 0 0.7071 0
−0.5774 0 0.8165 0 0 0
−0.5774 0 −0.4082 0 −0.7071 0

0 0 0 −0.7071 0 −0.7071
0 −1 0 0 0 0
0 0 0 −0.7071 0 −0.7071


and

R =
[

RA

0

]
=


−1 0 −0.5774 −0.7071 −0.4082
0 −1 0 −0.4082 −0.7071
0 0 0.8165 0 0.5774
0 0 0 −0.5774 0
0 0 0 0 0
0 0 0 0 0

 .

Toc JJ II J I Back J Doc Doc I



Section 4: The QR Factorization 16

Therefore the economized representation for A is

A = [QAQ⊥
A]

[
RA

0

]
= QARA.

The first rA column of Q forms a basis for the columns of A.
In general it is important to use column pivoting to ensure that the

zeros appear at the bottom of R and no zero appear on the diagonal
of the upper part of R. The factorization gives Q, R, and P such
that AP = QR, where P is a permutation matrix. AP amounts to a
simple reordering of the document vectors. We will assume hereafter
that this reordering has been performed and let A to represent AP.

In Matlab, Q, R, and P can be obtained by
[Q, R, P] = qr(A)

The semantic content of a db is fully described by any basis for
the column space of A. Query matching now proceeds with Q and R
in place of A.

Let e(j) be a vector given by the jth column of the identity matrix,
thus its nth element is given by δjn, where δ is the Knonecker symbol.

Toc JJ II J I Back J Doc Doc I



Section 4: The QR Factorization 17

For any matrix, C, Ce(j) is the jth column of C because

(Ce(j))m =
∑

n

Cmn(e(j))n =
∑

n

Cmnδjn = Cmj .

Thus multiplying
A = QARA.

from the right by e(j), we see that

aj = QArj ,

where aj is the jth column of A and rj is the jth column of RA.
Therefore we have

cos θj =
aT

j q
‖aj‖2‖q‖2

=
(QArj)T q

‖QArj‖2‖q‖2
=

(QArj)T q
‖rj‖2‖q‖2

.

4.2. Geometry of the Vector Space Model

Let S be the space spanned by the columns of A, and let S⊥ be its
complementary space. So every vector in S is perpendicular to every

Toc JJ II J I Back J Doc Doc I



Section 4: The QR Factorization 18

vector in S⊥. Now if I is the t× t identity matrix, then

I = QQT = [QAQ⊥
A][QAQ⊥

A]T

= [QAQ⊥
A]

[
QT

A

(Q⊥A)T

]
= QAQT

A + Q⊥A(Q⊥A)T .

Therefore the query vector q can be resolved into 2 mutually orthog-
onal components

q = I q = QAQ⊥
Aq + Q⊥A(Q⊥A)T q = qA + q⊥A.

Clearly qA is the orthogonal projection of q into S, and q⊥A is the
orthogonal projection into S⊥.

Let x be an arbitrary vector in S. Then using Pythagorean theo-
rem, we have

‖q−x‖2
2 = ‖(q−qA)+(qA−x)‖2

2 = ‖q−qA‖2
2+‖qA−x‖2

2 ≥ ‖q−qA‖2
2.

Thus
‖q− qA‖2

2 = min
x∈S

‖q− x‖2
2.

That is qA is the closest approximation of the query vector q in S.

Toc JJ II J I Back J Doc Doc I



Section 4: The QR Factorization 19

Next aj must be perpendicular to q⊥A since they are in comple-
mentary spaces. More specifically we have

aT
j Q⊥

A = (QArj)T Q⊥
A = rjQT

AQ⊥
A = 0,

since any column in QA is perpendicular to any column in Q⊥
A. There-

fore we have

cos θj =
aT

j (qA + q⊥A)
‖aj‖2‖q‖2

=
aT

j qA

‖aj‖2‖q‖2
.

So only the qA component of q contribute to the dot product used to
compute cos θj .

Now if we replace q with qA, and compute a new measure of
similarity by

cos θ̃j =
aT

j qA

‖aj‖2‖qA‖2
,

which is clearly larger than cos θj , more relevant documents will be
retrieved (i.e. a high recall), but at the expense of reducing the pre-
cision.

Toc JJ II J I Back J Doc Doc I



Section 5: The Low-Rank Approximation 20

5. The Low-Rank Approximation

A term-by-document matrix A might be better represented by a ma-
trix sum A+E, where the uncertainty matrix E may have any number
of values reflecting missing or incomplete information about docu-
ments or even different opinions on the relevancy of documents to
certain subjects.

A + E may have a rank lower than that of A. Lowering the rank
may help to remove extraneous information or noise from the matrix
representation of the db.

We need a notion of the size of a matrix We will use the Frobenius
norm, which for any t× d matrix, M is defined as

‖M‖F =

√√√√ t∑
i=1

d∑
j=1

m2
ij =

√√√√ t∑
i=1

d∑
j=1

mij(MT )ji =
√

tr(MMT ).

In Matlab, the Frobenius norm of M is given by
norm(M,’fro’)

We recall that for any square matrix, its trace is given by the sum

Toc JJ II J I Back J Doc Doc I



Section 5: The Low-Rank Approximation 21

of its diagonal elements. Also for any m × n matrix S and n × m
matrix T, we have tr(ST) = tr(TS).

Premultiplying a t × d matrix, M , by a t × t orthogonal matrix
X leaves the Frobenius norm unchanged:

‖XM‖2
F = tr((XM)T XM) = tr((MT XT XM) = tr((MT M) = ‖M‖2

F .

Postmultiplying M , by a d × d orthogonal matrix Y also leaves the
Frobenius norm unchanged:

‖MY‖2
F = tr((MY)T MY) = tr((YT MT MY) = tr((YYT MT M)

= tr((MT M) = ‖M‖2
F .

Recall that the rank of A is given by the number of nonzero di-
agonal elements in R. These nonzero diagonal elements are ordered
from large to small magnitudes by column pivoting in the QR decom-
position.

Toc JJ II J I Back J Doc Doc I



Section 5: The Low-Rank Approximation 22

We now consider partitioning R as

R =
[

R11 R12

0 R22

]
=


−1 0 −0.5774 −0.7071 −0.4082
0 −1 0 −0.4082 −0.7071
0 0 0.8165 0 0.5774
0 0 0 −0.5774 0
0 0 0 0 0
0 0 0 0 0

 .

We find that
‖R22‖F

‖R‖F
=

0.5774
2.2361

= 0.2582,

and so R22 is a relatively small part of R. If we remove R22 and
define a new upper triangular matrix

R̃ =
[

R11 R12

0 0

]
which clearly has a lower rank (=3 for our example). Let us define

Toc JJ II J I Back J Doc Doc I



Section 5: The Low-Rank Approximation 23

A + E = QR̃, and so

E = QR̃−A = QR̃−QR = Q(R̃−R) = Q
[

0 0
0 −R22

]
.

The square of its Frobenius norm is

‖E‖2
F =

∥∥∥∥[
0 0
0 −R22

]∥∥∥∥2

F

= tr
([

0 0
0 −RT

22

] [
0 0
0 −R22

])
= ‖R22‖2

F .

Because
‖A‖2

F = ‖QR‖2
F = ‖R‖2

F ,

we have
‖E‖F

‖A‖F
=
‖R22‖F

‖R‖F
,

thus the relative change in A is the same as the relative change in
R, which has a value of 0.2582 in our example. Uncertainty of this
magnitude can be introduced simply by disagreement between expert
indexers.

Toc JJ II J I Back J Doc Doc I



Section 5: The Low-Rank Approximation 24

Replacing A by A + E by using R̃ and the first 3 columns of Q
to compute the cosines gives

cos θ(1) = [0.8165 0 0 0.7071 0]

for q(1), thus returning the first and the fourth documents as before.
The more interesting case is for q(2) which now gives

cos θ(2) = [0.5774 0 0 0.5 0].

Thus in addition to document 1, document 4, which we failed to
return before, is now retrieved as relevant. We have improved the
recall ability.

Next, if we push the rank reduction further, including now only
the first 2 rows of R and the first 2 columns of Q, we see that the
relative change in A is rather large:

‖E‖F

‖A‖F
=
‖R22‖F

‖R‖F
= 0.5146.

The result for q(1) is

cos θ(1) = [0.8165 0 0.8165 0.7071 0.4083],

Toc JJ II J I Back J Doc Doc I



Section 6: The Singular Value Decomposition 25

thus not only returning the first and the fourth books as before, the
third book on Numerical Recipes is also retrieved! This book certainly
have nothing to do with baking, and thus precision has been lowered.

We have precision problem also with q(2), which now gives

cos θ(2) = [0.5774 0 0.5774 0.5 0.2887].

Thus in both queries, irrelevant documents are incorrectly identified,
and so we should not have pushed too far with rank reduction.

In general, the choice of the threshold cutoff value and the degree
of rank reduction depend very much on the details of the particular
db. A lot of fine-tuning and experimentation are needed to make IR
really work well.

6. The Singular Value Decomposition

QR factorization gives a reduced-rank basis for the column space of
A, it gives no such information about its row space. Other than the
documents themselves, the terms chosen for the db may also very
well have noise and dependencies among them. The solution is to use

Toc JJ II J I Back J Doc Doc I



Section 6: The Singular Value Decomposition 26

singular value decomposition (SVD), which although is more expen-
sive to compute, provides simultaneous reduced-rank approximation
to both the column and the row spaces.

The SVD of the term-by-document matrix is

A = UΣVT ,

where U is a t× t orthogonal matrix having the left singular vectors
of A in its columns, V is a d× d orthogonal matrix having the right
singular vectors of A in its columns, and Σ is a t× d diagonal matrix
having singular values σ1 ≥ σ2 ≥ · · · ≥ σmin(t,d) ≥ 0 of A along its
diagonal. This factorization exist for any matrix A. Recall also that
the rank of A, rA, is given by the number of nonzero singular values.
The first rA columns of U form a basis for the column space of A,
and the first rA rows of VT form a basis for the row space of A. We
can create a rank-k approximation to A, A(k), by setting all but the
k largest singular values of A to zero.

The theorem by Eckart and Young implies that the distance be-
tween A and any of its rank-k approximants is minimized by A(k).

Toc JJ II J I Back J Doc Doc I



Section 6: The Singular Value Decomposition 27

Moreover on has

min
rank(X)≤k

‖A−X‖F = ‖A−A(k)|F =
√

(σ2
k+1 + · · ·+ σ2

rA
).

The Frobenius norm of A is simply related to the singular values:

‖A‖F = ‖UΣVT ‖F = ‖ΣVT ‖F = ‖VΣT ‖F = ‖ΣT ‖F

=

√√√√ rA∑
j=1

σ2
j .

The rank-k approximation to A is

A(k) = U(k)Σ(k)(V(k))T ,

where U(k) is the t× k matrix whose columns are the first k columns
of U, V(k) is the d× k matrix whose columns are the first k columns
of V, and Σ(k) is the k × k diagonal matrix whose diagonal elements
are σ1, · · ·σk, the k largest singular value of A.

From the Eckart and Young theorem we have ‖A − A(3)‖F =
σ4 = 0.4195, and so ‖A − A(3)‖F /‖A‖F = 0.4195/2.2361 = 0.1876.

Toc JJ II J I Back J Doc Doc I



Section 7: The Reduced-Rank Vector Space Model 28

On the other hand, ‖A − A(2)‖F =
√

σ2
3 + σ2

4 = 0.9392, and so
‖A−A(2)‖F /‖A‖F = 0.9392/2.2361 = 0.4200. These relative changes
are much smaller than the corresponding changes, 0.2582 and 0.5146,
using the QR method. Therefore we expect A(3) to represent the
structure of the db well.

It is also interesting to note that the rank-3 approximation to A
in the QR method looks much closer to the corresponding matrix
in the SVD method. The latter contains negative elements resulting
from linear combination from the columns of A. Interpretation of
the elements as related to the number of times a certain term appear
in a given document no longer applies. However that should not
present any problem, since the db content is modeled by the geometric
relationship between the columns of A and the query vectors.

7. The Reduced-Rank Vector Space Model

We now compare the query vector q to the columns of A(k). By
defining e(j) to be a vector of length d such that (e(j))i = δij , we can

Toc JJ II J I Back J Doc Doc I



Section 7: The Reduced-Rank Vector Space Model 29

write

cos θj =
(A(k)e(j))T q

‖A(k)e(j)‖2‖q‖2
=

(U(k)Σ(k)(V(k))T e(j))T q
‖U(k)Σ(k)(V(k))T e(j)‖2‖q‖2

=
(e(j))T V(k)Σ(k)(U(k))T q
‖Σ(k)(V(k))T e(j)‖2‖q‖2

.

The above equation can be rewritten in terms of the following vector
of length k

s(j) = Σ(k)(V(k))T e(j),

as

cos θj =
(s(j))T (U(k))T q
‖s(j)‖2‖q‖2

.

It is clear that (U(k))T q is the projection of q into the column
space of A(k). As in the QR factorization, we introduce a larger
cosine term

cos θ̃j =
(s(j))T (U(k))T q

‖s(j)‖2‖(U(k))T q‖2
.

to improve recall (of course at the possible expense of precision).

Toc JJ II J I Back J Doc Doc I



Section 7: The Reduced-Rank Vector Space Model 30

We now revisit the query q(1) for books about baking bread. Using
now the rank-3 approximation, A(3), we find that

cos θ̃(1) = [0.7327 − 0.0469 0.0330 0.7161 − 0.0097].

The first and the fourth books are still correctly identified, with no
irrelevant books incorrectly returned. For the query q(2) about baking
bread, A(3) gives

cos θ̃(2) = [0.5181 − 0.0332 0.0233 0.5064 − 0.0069].

Both books about baking are returned with similar ratings, and no
irrelevant books are incorrectly returned.

However if we push one step further and use the rank-2 approxi-
mation, A(2), we find that

cos θ̃(1) = [0.5181 − 0.1107 0.5038 0.3940 0.2362].

The first book is correctly returned. But the Numerical Recipes book
has a rating almost as high as the first book. It is incorrectly returned.
The fourth book, which is perhaps the best match, does not even make
the cut, and will not be retrieved.

Toc JJ II J I Back J Doc Doc I



Section 8: Term-Term Comparison 31

For the query q(2) about baking bread, A(2) gives

cos θ̃(2) = [0.3663 − 0.0783 0.3563 0.2786 0.1670].

whose values are all less than 0.5. Thus not even a single book is
retrieved. Clearly A(2) is not a reasonable approximation to A.

8. Term-Term Comparison

Up to this point, we have been concerned with the vector space model
as a mechanism for comparing queries with documents. With minor
variation, the model can also be used to compare terms with terms.
When implemented as part of a search engine, a term-term comparison
helps to refine the results of a search automatically.

9. Other Techniques that Really make IR Work

9.1. Relevance Feedback

Due to polysemy and synonymy, a list of document retrieved for a
given query is never perfect; user has to ignore some of the returned

Toc JJ II J I Back J Doc Doc I



Section 9: Other Techniques that Really make IR Work 32

items.
Precision can be improved using relevance feedback, where the

user helps to specify which document from a returned set are most
relevant. That information is then used to clarify the intend of the
original query.

Term-term comparison can be used for relevance feedback to im-
prove a query based on term clustering information.

Relevance feedback can also be carried out in the column space of
the t× d matrix. The query is supplemented or even replaced by the
vector sum of the most relevant document returned in order to focus
the search nearer those document vectors.

9.2. Managing Dynamic Collections

Information is constantly added or removed, meaning that catalogs
and indexes become obsolete or incomplete (sometimes in a matter
of seconds). The most obvious approach to accommodating additions
(new terms or documents) is to recompute the SVD of the new term-
by-document matrix, but, for large databases, this procedure is very

Toc JJ II J I Back J Doc Doc I



Section 9: Other Techniques that Really make IR Work 33

costly in time and space. Less expensive alternatives, such as folding-
in and SVD-updating, have been examined.

9.3. Downdating

Using SVD-downdating, the present model can be modified to reflect
the removal of terms and documents and any subsequent changes to
term weights. Downdating can be useful for information filtering (e.g.,
parental screening of Internet sites) and evaluating the importance of
a term or document with respect to forming or breaking clusters of
semantically related information.

9.4. Sparsity

The sparsity of a term-by-document matrix is a function of the word
usage patterns and topic domain associated with the document col-
lection. The more new terms each document brings to the global
dictionary, the sparser is the matrix overall. The sample IR matri-
ces studied are typically no more than 1% dense. Exploitation of
the sparcity can significantly improve response times, updating and

Toc JJ II J I Back J Doc Doc I



Section 9: Other Techniques that Really make IR Work 34

downdating processing times.

Toc JJ II J I Back J Doc Doc I



Section 9: Other Techniques that Really make IR Work 35

References

[1] W. Frakes and R. Baeza-Yates, Information Retrieval: Data
Structures and Algorithms, Prentice Hall, Englewood Cliffs, NJ,
1992. 3

[2] G. Kowalski, Information Retrieval Systems: Theory and Imple-
mentation, Kluwer Academic Publishers, Boston, 1997. 3

[3] Material here is taken from the article by Michael W. Berry,
Zlatko Drmač, and Elizabeth R. Jessup, Matrices, Vector Spaces,
and Information Retrieval , SIAM REVIEW, Society for Indus-
trial and Applied Mathematics, Vol. 41, No. 2, pp. 335362, 1999.

3

Toc JJ II J I Back J Doc Doc I


	Table of Contents
	1 Introduction
	2 Challenges in Indexing Large Collection of Information
	3 Vector Space Model
	3.1 A Vector Space Formulation of Information
	3.2 A Simple Example

	4 The QR Factorization
	4.1 Identifying a Basis for the Column Space
	4.2 Geometry of the Vector Space Model

	5 The Low-Rank Approximation
	6 The Singular Value Decomposition
	7 The Reduced-Rank Vector Space Model
	8 Term-Term Comparison
	9 Other Techniques that Really make IR Work
	9.1 Relevance Feedback
	9.2 Managing Dynamic Collections
	9.3 Downdating
	9.4 Sparsity


