
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Another Algorithm for Computing
π Attributable to Archimedes:
Avoiding Cancellation Errors

K. Ming Leung

Abstract: We illustrate how cancellation error can
limit the accuracy that can be achieved by an algorithm
for computing π, and how that error can be avoided.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: February 21, 2004

mailto:mleung@poly.edu

2

In 250 B.C., the Greek mathematician Archimedes estimated the
value of π by approximating the circumference of a circle by the
perimeter of a regular polygon having 2n sides, where n = 2, 3,
He knew that the approximation becomes better and better as n in-
creases. In addition he was able to derive a recursion formula relating
the perimeter of a regular polygon to the perimeter of another regular
polygon having twice as many sides. One version of his method is
described here.

He considered a circle with diameter equal to 1, hence its circum-
ference is π. Inside the circle he inscribed a square. The perimeter
of the square is less than the circumference of the circle, and so it
is a lower bound for π. Archimedes then considered an inscribed oc-
tagon, hexadecagon, etc., each time doubling the number of sides of
the inscribed polygon, and producing better and better estimates for
π.

Let pn be the perimeter of the inscribed polygon with 2n+1 sides,
where n = 1, 2, Let the length of each side be denoted by sn. Then
p1 is the perimeter of the inscribed square, and from the geometry we
know that s1 = 1/

√
2 and so p1 = 4s1 = 2

√
2. The perimeter of an

JJ II J I Back J Doc Doc I

3

s1/2
s2

A

BC

D

h

1/2

JJ II J I Back J Doc Doc I

4

inscribed octagon p2 is equal to 8s2, and the perimeter of an inscribed
hexadecagon p3 is equal to 16s2. In general we see that

pn = 2n+1sn for n = 1, 2, (1)

In the limit that n goes to infinity, the regular polygon becomes more
and more like the circle and so we have p∞ = π. So far the only
perimeter we know is p1 for the square. However Archimedes was
able to obtain a recursive formula for the perimeters of the polygons.
This allowed him to compute p2 from p1, and p3 from p2, and so on.

To obtain such a recursive formula, let us see how to compute p2

from p1 using geometry only. Since triangle BCD is a right-angled
triangle, Pythagoras theorem gives

h =

√(
1
2

)2

−
(s1

2

)2

. (2)

Actually it is clear that h = s1/2, however this geometric relation
does not apply to other polygons with a different n. Since we want
a recursive relation that applies to all n, that relation must not be
used. The length AC is 1/2 and so the length AD is 1/2−h. Applying

JJ II J I Back J Doc Doc I

5

Pythagoras theorem to triangle ABD one has

s2 =

√(s1

2

)2

+
(

1
2
− h

)2

Substituting h from Eq. (2) into this equation, expanding and then
simplifying the expression yields the result

s2 =

√√√√1
2
−

√(
1
2

)2

−
(s1

2

)2

.

A careful inspection of the diagram reveals that such a relation holds
between s3 and s2, etc. Thus in general one has the recursive relation

sn+1 =

√√√√1
2
−

√(
1
2

)2

−
(sn

2

)2

, (3)

for n = 1, 2, We then obtain a recursive relation involving the

JJ II J I Back J Doc Doc I

6

perimeters using Eq. (1). The result is

pn+1 = 2n+1

√√√√2

(
1−

√
1−

(pn

2n+1

)2
)

. (4)

Starting the iteration with p1 = 2
√

2 and n = 1 we then get p2,
etc. One can easily write a program to implement that. The result
computed using MATLAB (in double-precision) is shown below. No-
tice that because of the iterative nature of the algorithm, the program
cannot be vectorized. The computed values for p1 to p31 are shown
below.

1 2.82842712474619

2 3.06146745892072

3 3.12144515225805

4 3.13654849054594

5 3.14033115695474

6 3.14127725093276

7 3.14151380114415

8 3.14157294036788

9 3.14158772527996

JJ II J I Back J Doc Doc I

7

10 3.14159142150464

11 3.14159234561108

12 3.14159257654500

13 3.14159263346325

14 3.14159265480759

15 3.14159264532122

16 3.14159260737572

17 3.14159291093967

18 3.14159412519519

19 3.14159655370482

20 3.14159655370482

21 3.14167426502176

22 3.14182968188920

23 3.14245127249413

24 3.14245127249413

25 3.16227766016838

26 3.16227766016838

27 3.46410161513775

28 4

29 0

JJ II J I Back J Doc Doc I

8

30 0

31 0

Notice that the values at first increase (as expected) and seem to
converge to the correct value for π until p14. Notice that this value
is slightly larger than π, but how can an inscribed polygon have a
perimeter larger than the inscribing circle! After that the values de-
crease slightly (again this is rather alarming since we do not expect
the perimeters to ever decrease with increasing n.) and gradually in-
crease above π and drift further and further away from π. After the
28th term the computed perimeters all become zero.

The reason for that is obvious from Eq. (4). Since pn is expected
to be around 3, the factor pn/2n+1, which is actually the length of
each side of the polygon, decreases as we iterate. As soon as(pn

2n+1

)2

≤
εmach

2
,

we have
1−

(pn

2n+1

)2

→ 1, and so pn+1 → 0,

due to cancellation in the above iteration formula in Eq. (4).

JJ II J I Back J Doc Doc I

9

To estimate the value of n at which that happens, we set pn ≈ 3
in the equation (pn

2n+1

)2

=
εmach

2
,

and solve for n to get

n = log2

(
pn

√
2

εmach

)
≈

(
3

√
2

1.1× 10−16

)
≈ 29.

This agrees with the results obtained from the program.
Before we deal with the problem associated with cancellation , we

want to address some issues related to numerical efficiency. First,
notice from Eq. (4) that on the right-hand side pn is divided by
2n+1 but pn+1 is obtained by multiplying a certain factor with 2n+1.
Clearly we can avoid all that if we perform the iteration on sn instead
of pn, i.e. we iterate using equation Eq. (3). The cancellation problem
is still present since as n increases the length of each segment of the
polygon sn decreases.

Second, notice that sn is being squared but to obtain sn+1 we need
to take a square root. Clearly all that can be avoided if we work with

JJ II J I Back J Doc Doc I

10

a new variable tn = s2
n. Changing to this new variable, we take the

square of Eq. (3) to obtain

tn+1 =
1
2
(
1−

√
1− tn

)
.

We can iterate using this formula starting with t1 = s2
1 = 1/2. The

perimeters are then given by

pn = 2n+1sn = 2n+1
√

tn.

Avoiding the squaring and the taking of a square root actually saves
about 40% of the computing time. Of course the cancellation problem
is still not yet solved.

Now we solve the cancellation problem. The key is to realize that
the above equation looks almost like the quadratic formula. The cure
is of course exactly the same. So we write

tn+1 =
1
2
(
1−

√
1− tn

)(1 +
√

1− tn
1 +

√
1− tn

)
(5)

=
1
2

1− (1− tn)
1 +

√
1− tn

=
1
2

tn
1 +

√
1− tn

. (6)

JJ II J I Back J Doc Doc I

11

Now this recursive formula does not have any cancellation problem.
When tn is small, the denominator simply becomes 2.

Let us do one more thing to see if we can further improve the
efficiency of the above algorithm by a simple re-scaling of the variable.
Let us introduce a scaled variable gn by writing tn = αgn. One can
see that Eq. (5) becomes

gn+1 =
gn

2 + 2
√

α
√

1
α − gn

.

Therefore if we let α = 1/4 so that 2
√

α = 1, the iterative relation for
gn becomes

gn+1 =
gn

2 +
√

4− gn
. (7)

There is one fewer multiplication in this formula than the one in Eq.
(5). Notice that tn = gn/4 = s2

n, and pn = 2n√gn. Thus we start the
iteration with g1 = 4s2

1 = 2. The computed values for p1 to p31 are
shown below.

1 2.828427124746190

JJ II J I Back J Doc Doc I

12

2 3.061467458920718
3 3.121445152258052
4 3.136548490545939
5 3.140331156954753
6 3.141277250932773
7 3.141513801144301
8 3.141572940367091
9 3.141587725277160
10 3.141591421511200
11 3.141592345570118
12 3.141592576584873
13 3.141592634338563
14 3.141592648776986
15 3.141592652386591
16 3.141592653288993
17 3.141592653514593
18 3.141592653570993
19 3.141592653585093
20 3.141592653588618

JJ II J I Back J Doc Doc I

13

21 3.141592653589500
22 3.141592653589720
23 3.141592653589775
24 3.141592653589789
25 3.141592653589793
26 3.141592653589794
27 3.141592653589794
28 3.141592653589794
29 3.141592653589794
30 3.141592653589794

After 26 iterations, the result converges to a value as close to π as is
possible using IEEE double-precision. The result does not change with
further iterations. If one computes the relative error of this converged
value, the result is eps. That means that we have obtained the most
accurate result as we possibly can on this floating point system.

JJ II J I Back J Doc Doc I

