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The amazing number Π

This text accompanies an address giv-
en at the celebration to replace the lost
tombstone of Ludolph van Ceulen at the
Pieterskerk (St. Peter’s Church) in Leiden
on the fifth of July, 2000. It honours the par-
ticular achievements of Ludolph as well as
the long and important tradition of intellec-
tual inquiry associated with understanding
the number π and numbers generally.

The history of π parallels virtually the en-
tire history of Mathematics. At times it
has been of central interest and at times
the interest has been quite peripheral (no
pun intended). Certainly Lindemann’s
proof of the transcendence of π was one of
the highlights of nineteenth century math-
ematics and stands as one of the semi-
nal achievements of the millennium (very
loosely this result says that π is not an easy
number). One of the low points was the
Indiana State legislatures attempts to leg-
islate a value of π in 1897: an attempt as
plausible as repealing the law of gravity.

Why π?
The amount of human ingenuity that has
gone into understanding the nature of π

and computing its digits is quite phenom-
enal and begs the question “why π?”. Af-
ter all there are more numbers than one
can reasonably contemplate that could get
a similar treatment. And π is just one
of the very infinite firmament of num-
bers. Part of the answer is historical. It is
the earliest and the most naturally occur-
ring hard number (technically, hard means
transcendental which means not the so-
lution of a simple equation). Even the
choice of label ‘transcendental’ gives it
something of a mystical aura.

What is pi? First and foremost it is a
number, between 3 and 4 (3.14159. . .). It
arises in any computations involving cir-
cles: the area of a circle of diameter 1
or equivalently, though not obviously, the
perimeter of a circle of diameter 1/2. The
nomenclature π is presumably the Greek
letter ‘p’ in periphery. The most basic

properties of π were understood in the pe-
riod of classical Greek mathematics by the
time of the death of Archimedes in 212 BC.

Ruler and compass
The Greek notion of number was quite dif-
ferent from ours, so the Greek numbers
were our whole numbers: 1,2, 3. . . In
Greek geometry the essential idea was not
number but continuous magnitude, e.g.
line segments. It was based on the no-
tion of multiplicity of units and, in this

Bill No. 246, 1897. State of Indiana

“Be it enacted by the General Assembly of
the State of Indiana: It has been found
that the circular area is to the quadrant of
the circumference, as the area of an equi-
lateral rectangle is the the square on one
side.”
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The beginning of the story of π: Pi-henge

sense, numbers that existed were num-
bers that could be drawn with just an un-
marked ruler and compass. The rules
allowed for starting with a fixed length
of 1 and seeing what could be construct-
ed with straight edge and compass alone.
(Our current notion is much more based
on counting.) The question of whether π

is a constructible magnitude had been ex-
plicitly raised as a question by the sixth
century BC and the time of the Pythagore-
ans. Unfortunately π is not constructible,
though a proof of this would not be avail-
able for several thousand years. In this
context there isn’t a more basic question
than “is π a number?" Of course, our more
modern notion of number embraces the
Greek notion of constructible and doesn’t
depend on construction. The existence of
π as a number given by an infinite (albeit
unknown) decimal expansion poses little
problem.

Very early on the Greeks had hypoth-
esized that π wasn’t constructible, Aristo-
phanes already makes fun of “circle squar-
ers” in his fifth century BC play “The
Birds.”

Lindemman’s proof of the transcen-
dence of π in 1882 settles the issue that π

is not constructible by the Greek rules and
a truly marvelous proof was given a few
years later by Hilbert. Not that this has
stopped cranks from still trying to con-
struct π .

Does this tell us everything we wish
to know about π . No, our ignorance is
still much more profound than our knowl-
edge! For example, the second most nat-
ural hard number is e which is provably
transcendental. But what about π + e?
This embarrassingly easy question is cur-
rently totally intractable (we don’t even
know how to show that π + e is irrational).
The number π is a mathematical apple
and e is a mathematical orange and we
have no idea how to mix them.

The need for π

Why compute the digits of π? Some-
times it is necessary to do so, though hard-
ly ever more than the 6 or so digits that
Archimedes computed several thousand
years ago are needed for physical applica-
tions. Even far fetched computations like
the volume of a spherical universe only re-
quire a few dozen digits. There is also the
‘Everest Hypothesis’ (‘because its there’).
Probably the number of people involved
and the effort in time has been similar
in the two quests. A few thousand peo-
ple have reached the computational lev-
el that requires the carrying of oxygen —
though so far I know of no π related fa-
talities. There has been significant knowl-
edge accumulated in this slightly quixotic
pursuit. But this knowledge could have
been derived from computing a host of
other numbers in a variety of different
bases. Once again the answer to “why π”
is largely historical and cultural. These
are good but not particularly scientific rea-
sons. Pi was first, pi is hard and pi has cap-
tured the educated imagination. (Have
you ever seen a cartoon about log 2 — a
number very similar to π?)

Whatever the personal motivations π

has been much computed and a surpris-
ing amount has been learnt along the way.

The mathematics involved
In constructing the all star hockey team
of great mathematicians, there seems to

The titlepage of Lindemann´s proof of the ir-
rationality of π

Digits of π represented by grey tones

be pretty wide agreement that the front
line consists of Archimedes, Newton, and
Gauss. Both Archimedes and Newton
invented methods for computing pi. In
Newton’s case this was an application of
his newly invented calculus. I know of
no such calculation from Gauss though his
exploration of the Arithmetic-Geometric
mean iteration laid the foundation of the
most successful methods for doing such
calculations. There is less consensus about
who comes next. I might add Hilbert and
Euler next (on defense). Both of these
mathematicians also contribute to the sto-
ry of π . Perhaps von Neumann is in goal
— certainly he is a candidate for the most
versatile and smartest mathematician of
the twentieth century. One of the first cal-
culations done on ENIAC (one of the first
real computers) was the computations of
roughly a thousand digits of π and von
Neumann was part of the team that did
the calculation.

One doesn’t often think of a problem
like this having economic benefits. But as
is often the case with pure mathematics
and curiosity driven research the rewards
can be surprising. Large recent records de-
pend on three things: better algorithms for
pi; larger and faster computers; and an un-
derstanding of how to do arithmetic with
numbers that are billions of digits long

The better algorithms are due to a vari-
ety of people including Ramanujan, Brent,
Salamin, the Chudnovsky brothers and
ourselves. Some of the mathematics is
both beautiful and subtle. (The Ramanu-
jan type series listed in the appendix are,
for me, of this nature.)

The better computers are, of course, the
most salient technological advance of the
second half ot the twentieth century.
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Understanding arithmetic is an interesting
and illuminating story in its own right. A
hundred years ago we knew how to add
and multiply – do it the way we all learned
in school. Now we are not so certain ex-
cept that we now know that the “high
school method” is a disaster for multiply-
ing really big numbers. The mathemati-
cal technology that allows for multiplying
very large numbers together is essentially
the same as the mathematical technology
that allows image processing devices like
CAT scanners to work (FFTs). In making
the record setting algorithms work, David
Bailey tuned the FFT algorithms in sev-
eral of the standard implementations and
saved the US economy millions of dol-
lars annually. Most recent records are set
when new computers are being installed
and tested. (Recent records are more or
less how many digits can be computed in a
day — a reasonable amount of test time on
a costly machine.) The computation of pi
seems to stretch the machine and there is

Cow pi

a history of uncovering subtle and some-
times not so subtle bugs at this stage.

Patterns in π

What do the calculations of π reveal and
what does one expect? One expects that
the digits of pi should look random — that
roughly one out each ten digits should
be a 7 et cetera. This appears to be true
at least for the first few hundred billion.
But this is far from a proof — an actu-

al proof of this is way out of the reach
of current mathematics. As is so often
the case in mathematics some of the most
basic questions are some of the most in-
tractable. What mathematicians believe is
that every pattern possible eventually oc-
curs in the digits of pi — with a suitable
encoding the Bible is written in entirety in
the digits, as is the New York phone book
and everything else imaginable.

The question of whether there are sub-
tle patterns in the digits is an interesting
one. (Perhaps every billionth digit is a
seven after a while. While unlikely this
is not provably impossible. Or perhaps
pi is buried within pi in some predictable
way.) Looking for subtle patterns in long
numbers is exactly the kind of problem
one needs to tackle in handling the hu-
man genome (a chromosome is just a large
number base 4, at least to a mathemati-
cian). k
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Appendices
I have included two appendices. One is from David H. Bailey, Jonathan M. Borwein, Peter B. Borwein, and Simon Plouffe, “The Quest for Pi,” (June, 1996)
The Mathematical Intelligencer. It is a chronology of the computation of digits of π . The second is taken from: Lennert Berggren, Jonathan M. Borwein
and Peter B. Borwein, “Pi: A Source Book” Springer-Verlag 1988. It is a list of significant mathematical formulae related to π . These are reproduced with
permission from Springer–Verlag New York.

The previously mentioned chronology is of the problem of computing all of the initial digits of pi. There is also a shorter chronology of computing
just a few very distant bits of pi. The record here is 40 trillion and is due to Colin Percival using the methods described in the last reference above. It is
surprising that this is possible at all.
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Appendix Ia. A computational chronology for pi
History of π calculations (pre 20th century)

Babylonians 2000? BCE 1 3.125 (3 1
8 )

Egyptians 2000? BCE 1 3.16045 (4( 8
9 )2)

China 1200? BCE 1 3
Bible (1 Kings 7:23) 550? BCE 1 3
Archimedes 250? BCE 3 3.1418 (ave.)
Hon Han Shu 130 AD 1 3.1622 ( =

√
10 ?)

Ptolemy 150 3 3.14166
Chung Hing 250? 1 3.16227 (

√
10)

Wang Fau 250? 1 3.15555 ( 142
45 )

Liu Hui 263 5 3.14159
Siddhanta 380 3 3.1416
Tsu Ch’ung Chi 480? 7 3.1415926
Aryabhata 499 4 3.14156
Brahmagupta 640? 1 3.162277 ( =

√
10)

Al-Khowarizmi 800 4 3.1416
Fibonacci 1220 3 3.141818
Al-Kashi 1429 14
Otho 1573 6 3.1415929
Viete 1593 9 3.1415926536 (ave.)
Romanus 1593 15
Van Ceulen 1596 20
Van Ceulen 1610 35
Newton 1665 16
Sharp 1699 71
Seki 1700? 10
Kamata 1730? 25
Machin 1706 100
De Lagny 1719 127 (112 correct)
Takebe 1723 41
Matsunaga 1739 50
Vega 1794 140
Rutherford 1824 208 (152 correct)
Strassnitzky and Dase 1844 200
Clausen 1847 248
Lehmann 1853 261
Rutherford 1853 440
Shanks 1874 707 (527 correct)

Appendix Ib.
History of π calculations (20th century)

Ferguson 1946 620
Ferguson Jan. 1947 710
Ferguson and Wrench Sep. 1947 808
Smith and Wrench 1949 1,120
Reitwiesner et al. (ENIAC) 1949 2,037
Nicholson and Jeenel 1954 3,092
Felton 1957 7,480
Genuys Jan. 1958 10,000
Felton May 1958 10,021
Guilloud 1959 16,167
Shanks and Wrench 1961 100,265
Guilloud and Filliatre 1966 250,000
Guilloud and Dichampt 1967 500,000
Guilloud and Bouyer 1973 1,001,250
Miyoshi and Kanada 1981 2,000,036
Guilloud 1982 2,000,050
Tamura 1982 2,097,144
Tamura and Kanada 1982 8,388,576
Kanada, Yoshino and Tamura 1982 16,777,206
Ushiro and Kanada Oct. 1983 10,013,395
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada, Tamura, Kubo, et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Chudnovskys Jun. 1989 525,229,270
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1989 1,011,196,691
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Takahashi and Kanada Jun. 1995 3,221,225,466
Kanada Aug. 1995 4,294,967,286
Kanada Oct. 1995 6,442,450,938
Kanada Jun. 1997 51,539,600,000
Kanada Sep. 1999 206,158,430,000

Appendix II. Selected formulae for pi

Archimedes (ca. 250 BC)
Let a0 := 2

√
3, b0 := 3 and

an+1 :=
2anbn

an + bn
and bn+1 :=

√
an+1bn .

Then an and bn converge linearly to π (with an error O(4−n).)

Francois Viete (ca. 1579)

2
π

=

√
1
2

√
1
2

+
1
2

√
1
2

√√√√ 1
2

+
1
2

√
1
2

+
1
2

√
1
2
· · ·

John Wallis (ca. 1650)
π

2
=

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · 9 · · ·

William Brouncker (ca. 1650)

π =
4

1 + 1
2+ 9

2+ 25
2+···

Madhava, James Gregory, Gottfried Wilhelm Leibnitz (1450–1671)
π

4
= 1 − 1

3
+

1
5
− 1

7
+ · · ·
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Isaac Newton (ca. 1666)

π =
3
√

3
4

+ 24
(

2
3 · 23 − 1

5 · 25 − 1
28 · 27 − 1

72 · 29 − · · ·
)

Machin Type Formulae (1706–1776)

π

4
= 4 arctan(

1
5
) − arctan(

1
239

)

π

4
= arctan(

1
2
) + arctan(

1
3
)

π

4
= 2 arctan(

1
2
) − arctan(

1
7
)

π

4
= 2 arctan(

1
3
) + arctan(

1
7
)

Leonard Euler (ca. 1748)

π2

6
= 1 +

1
22 +

1
32 +

1
42 +

1
52 + · · ·

π4

90
= 1 +

1
24 +

1
34 +

1
44 +

1
54 + · · ·

π2

6
= 3

∞

∑
m =1

1

m2(2m
m )

Srinivasa Ramanujan (1914)

1
π

=
∞

∑
n=0

(
2n
n

)
3 42n + 5

212n+4 .

1
π

=
√

8
9801

∞

∑
n=0

(4n)!
(n!)4

[1103 + 26390n]
3964n .

Each additional term of the latter series adds roughly 8 digits.

Louis Comtet (1974)

π4

90
=

36
17

∞

∑
m=1

1

m4(2m
m )

Eugene Salamin , Richard Brent (1976)
Set a0 = 1, b0 = 1/

√
2 and s0 = 1/2. For k = 1, 2, 3, · · · compute

ak =
ak−1 + bk−1

2

bk =
√

ak−1bk−1

ck = a2
k − b2

k

sk = sk−1 − 2kck

pk =
2a2

k
sk

Then pk converges quadratically to π .

Jonathan Borwein and Peter Borwein (1991)
Set a0 = 1/3 and s0 = (

√
3 − 1)/2. Iterate

rk+1 =
3

1 + 2(1 − s3
k)

1/3

sk+1 =
rk+1 − 1

2

ak+1 = r2
k+1ak − 3k(r2

k+1 − 1)

Then 1/ak converges cubically to π .

[1985] Set a0 = 6 − 4
√

2 and y0 =
√

2 − 1. Iterate

yk+1 = 1−(1−y4
k )

1/4

1+(1−y4
k )

1/4

ak+1 = ak(1 + yk+1)4 − 22k+3 yk+1(1 + yk+1 + y2
k+1)

Then ak converges quartically to 1/π .

David Chudnovsky and Gregory Chudnovsky (1989)

1
π

=12
∞

∑
n=0

(−1)n (6n)!
(n!)3(3n)!

13591409+n545140134
(6403203)n+1/2 .

Each additional term of the series adds roughly 15 digits.

Jonathan Borwein and Peter Borwein (1989)

1
π

= 12
∞

∑
n=0

(−1)n(6n)!
(n!)3(3n)!

(A + nB)
Cn+1/2

where

A := 212175710912
√

61 + 1657145277365

B := 13773980892672
√

61 + 107578229802750

C := [5280(236674 + 30303
√

61)]3.

Each additional term of the series adds roughly 31 digits.

[1985] The following is not an identity but is correct to over 42
billion digits: (

1
105

∞

∑
n=−∞

e−
n2

1010

)
2 .= π .

Roy North (1989)
Gregory’s series for π , truncated at 500,000 terms gives to forty
places

4
500,000

∑
k =1

(−1)k−1

2k − 1

= 3.141590653589793240462643383269502884197.

Only the underlined digits are incorrect.

David Bailey, Peter Borwein and Simon Plouffe (1996)

π =
∞

∑
i=0

1
16i

( 4
8i + 1

− 2
8i + 4

− 1
8i + 5

− 1
8i + 6

)


