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We want to derive a formula that can be used to compute the first
derivative of a given function f(x) at any given point x assuming that
we can compute the function at any arbitrary point to the right of
x. Our interest here is to obtain the so-called one-sided difference
formula for the first derivative.

We start with the Taylor expansion of the function about the point
of interest, x,

f(x + h) ≈ f(x) + f ′(x)h +
1
2!

f ′′(x)h2 +
1
3!

f ′′′(x)h3 + . . . , (1)

where h, referred to as the step size, is supposed to be small. We are
interested in the first derivative but clearly we don’t want the formula
for the first derivative to involve the second or higher derivatives since
we don’t know how to compute those.

If we drop all those derivatives and solve for f ′(x), we have a first
order forward (one-sided) difference formula for the first derivative.
This formula has first order accuracy since the first term neglected is
proportional to h. (Note that one power of h is cancelled out in the
derivation.) That kind of accuracy is sometimes not sufficient and
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therefore we want to derive a higher order formula.
In order to obtain a higher order formula, we need to somehow

account for the term quadratic in h in the Taylor expansion. Clearly
we need to consider the Taylor expansion at a new point. In the
present case we can only consider points to the right of x. So we
consider

f(x + 2h) ≈ f(x) + 2f ′(x)h +
4
2!

f ′′(x)h2 +
8
3!

f ′′′(x)h3 + . . . . (2)

Notice that we can evaluate all the function values in Eqs. (1) and(2),
except for any of the derivatives. In order to account for the h2 term
and at the same time avoid having to compute f ′′(x), we look for
linear combinations of Eqs. (1) and(2) so that the h2 terms cancel
one another. It is clear that we want to take 4 times Eq. (1) and
subtract of Eq. (2). The result is

4f(x + h)− f(x + 2h) = 3f(x) + 2f ′(x)h− 2
3
f ′′′(x)h3 + . . . .

Solving for the first derivative gives the one-sided difference formula
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for the first derivative if we neglect all terms in h2 and higher:

f ′(x) =
4f(x + h)− f(x + 2h)− 3f(x)

2h
− 1

3
f ′′′(x)h2 + . . . . (3)

The truncation error, Etruncation, which is given by the mag-
nitude of the term that has been neglected, is clearly bounded by
Mh2/3, where M is a bound for f ′′′(x). Thus we have

Etruncation =
Mh2

3
. (4)

The one-sided difference formula is a second order scheme since
the truncation error, goes as the second power of h. Thus the formula
is more and more accurate with smaller and smaller values of h. For
the same value of h, a second order scheme has less truncation error
than a first order scheme.

However we want to consider the effect of rounding error when we
apply this formula for numerical work. Assuming that the magnitudes
of the rounding errors in computing the function values in Eq. (3) are
given by by the machine ε. (Note that the situation in general is
expected to be worst.) That is the computation has f(x) any where
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between f(x) + ε and f(x) − ε. Similarly the same is true for the
values of f(x + h) and f(x + 2h). The rounding error in computing
the numerator in Eq. (3) therefore is given by 8ε. Notice that in error
analysis, we must take the worst case scenario since we are looking
for an upper bound of the error. (So that at the end we can claim
that the error is no larger than a certain quantity.) Consequently the
rounding error in evaluating the above formula is

Erounding = 4ε/h. (5)

Thus rounding error increases with decreasing h.
The total computational error, E, is therefore bounded by the sum

of these two errors

E = Etruncation + Erounding =
Mh2

3
+

4ε

h
. (6)

Since the first term coming from truncation decreases with decreasing
h and the second term coming from rounding increases with decreas-
ing h, there must be an optimal value for h that represents the best
tradeoffs between these two sources of errors. This optimal value of
h then yields the smallest total error.
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To find this optimal value we differentiate E and set it to zero:
dE

dh
=

2M

3
h− 4ε

h2
= 0.

Solving for h gives the optimal value

hmin =
(

6ε

M

)1/3

.

Inserting this optimal value for h into the expression for E gives
the minimum error that can be achieved using this optimal h:

Emin =
M

3

(
6ε

M

)2/3

+ 4ε

(
M

3ε

)1/3

=
M

3

(
36ε

M2

)1/3

+ 4ε

(
M

3ε

)1/3

=
(

4Mε2

3

)1/3

+
(

8× 4Mε2

3

)1/3

= 3
(

4Mε2

3

)1/3

=
(
36Mε2

)1/3
.

Notice that in this example, rounding errors contribute 2/3 and trun-
cation errors contribute 1/3 to Emin, the total minimum computa-
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tional error. This is to be expected. As the order of a scheme goes
up, the more and more is the limitation imposed by rounding on the
ultimate highest accuracy that can be achieved.

One can easily check to see that the above optimal h clearly cor-
responds to a minimum of the total error.

As an example we compute using the forward difference formula
the first derivative of the sine function f(x) = sin(x) at x = 1. The
exact answer is clearly given by cos(1)(= 0.54030230586814, to ma-
chine accuracy). The second derivative is −sin(x) and its magnitude
is therefore bounded by M = 1. We use the formula for values of h
varying from 10−16 to 100. For each value of h we computed the first
derivative, from which we can compute the absolute value of the er-
ror. We then generate a log-log plot of the absolute value of the errors
versus h. The result is shown in the following figure. Plotted in the
figure in green is the truncation error as predicted by Eq.(4), and in
red the rounding error as predicted by Eq.(5). We see that for small
h, the error is dominated by the rounding error and indeed follows
(and bounded by) the green line. The errors appear rather noisy as
indicative of the rounding process. On the other hand, for large h,
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the error is dominated by the truncation error and indeed follows the
red line. In MATLAB, the machine epsilon is about 2× 10−16. From
Eq. () we find that hmin is bout 1 × 10−5 and from Eq. (7) we find
that Emin is about 1× 10−10. These results are in accord with what
we see in the figure.
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