POLYTECHNIC UNIVERSITY

Department of Computer and Information Science

> A Wacky Graph of a Simple Looking Function: The Problem

K. Ming Leung

Abstract

Plotting of a seemingly simple function can sometimes give unexpected wacky results that are due to the finiteness of the underlying floating-point system.

Directory

- Table of Contents
- Begin Article

Copyright © 2000 mleung@poly.edu Last Revision Date: January 19, 2005

Suppose we are given a function

$$
f(x)=\frac{1-\cos (x)}{x^{2}}
$$

and we want to know how it looks like by plotting it for specific ranges of values for x. One very easy way is to use the built-in function called ezplot in MATLAB. This can be done by typing the following at the command prompt
ezplot('(1-cos(x))/(x*x)', $[0,10])$;
The function was specified by the first argument of the ezplot function, and the second argument gives the range of x values for the plot. The plot looks great and it was certainly very easy to make indeed.

Suppose we are more interested in the range where x is small. We can shorten the range and plot again by entering the command ezplot('(1-cos(x))/(x*x)',[0,1e-2]);
Here the number $1 \mathrm{e}-2$ means 1×10^{-2}. The resulting graph looks rather uninteresting. However on closer inspection we notice a small blip in the curve near $x=0$. Actually MATLAB's ezplot function does not plot the end points of the given interval. It seems that the

blip cannot be due to the potential singularity of the function at $x=0$. One can do a closer inspection of the blip by using the zoom feature in MATLAB's graphics window.

Re-plotting the function for an even smaller range of x values gives even wackier results. We want to find out what is really going on.

First let us use calculus to find out the proper behavior of the function for x at the origin. When $x=0$ both the numerator and denominator of the function go to zero, so we need to use the l'Hôpital's rule to get

$$
\lim _{x \rightarrow 0} f(x)=\frac{\left.\frac{d}{d x}(1-\cos x)\right|_{x=0}}{\left.\frac{d}{d x}\left(x^{2}\right)\right|_{x=0}}=\frac{\left.\sin x\right|_{x=0}}{\left.2 x\right|_{x=0}}
$$

The numerator and denominator still both go to zero at $x=0$, so we have use the l'Hôpital's rule again to get

$$
\lim _{x \rightarrow 0} f(x)=\frac{\left.\frac{d}{d x} \sin x\right|_{x=0}}{\left.\frac{d}{d x} 2 x\right|_{x=0}}=\frac{\left.\cos x\right|_{x=0}}{\left.2\right|_{x=0}}=\frac{1}{2} .
$$

Therefore we see that the function must approach the constant value of $1 / 2$ at $x=0$. Thus the results we are seeing here are highly

$\ll \gg$ Back \downarrow Doc Doc

$\ll \gg$ Back \downarrow Doc Doc
incorrect.
To try to understand the cause of the problem we need to write a program to compute the function and analyze the results ourselves. We concentrate on the interval $\left[0,1 \times 10^{-7}\right]$ and obtain the result as shown in the following graph. The MATLAB program, wackyPlot0.m is available on the course website. This result is clearly also incorrect.

The graph has a lot of prominent features and looks rather complicated. When we understand how real numbers are represented in a digital computer, it turns out that we will be able to understand quantitatively every single feature exhibited in this graph.

