
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

The Hill Cipher

K. Ming Leung

Abstract: The Hill cipher in cryptography is used to
illustrate the application of matrices defined over a fi-
nite field, and the handling of characters and strings in
computer programs.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: November 17, 2003

mailto:mleung@poly.edu

Table of Contents
1. Introduction
2. Arithmetic over a finite field
3. Example of a Finite Field
4. Character Set and Strings
5. The m = 2 Hill Cipher

Section 1: Introduction 3

1. Introduction

The cryptographic technique known as the Hill cipher involves the
use of n× n matrices defined over a finite field. We will also take the
opportunity to illustrate how characters and strings can be handled
in (Matlab) programs.

2. Arithmetic over a finite field

A field is a set of numbers with an addition operation and a multipli-
cation operation defined so that the set of numbers are closed under
these operations. That means that the result of adding or multiplying
any two numbers in the set has to be in the set as well.

There has to be an identity element for addition (referred to as 0),
such that adding 0 to any element of the set gives exactly the same
element.

And there has to be an identity element for multiplication (referred
to as 1), such that multiplying any element by the unit element, 1,
gives back the same element.

Some other familiar properties are also required: there are addi-

Toc JJ II J I Back J Doc Doc I

Section 3: Example of a Finite Field 4

tive and multiplicative inverses for every number (except that zero
has no multiplicative inverse); and the commutative, associative, and
distributive laws are obeyed in exactly the same ways as in ordinary
arithmetic.

Examples of a field is the set of real numbers with ordinary op-
erations of addition and multiplication. Other examples include the
set of complex numbers and rational numbers with ordinary addition
and multiplication operations. However, all these examples of fields
have an infinite number of elements. A field with a finite number of
elements is called a finite field (also known as a Galois field). It has
the interesting feature that arithmetic could be done exactly by finite
machines, such as computers. Finite-field arithmetic has important
applications such as error-correcting codes and cryptography.

3. Example of a Finite Field

If p is a prime number, then the set of integers 0, 1, 2, . . . , p− 1 with
the usual addition and multiplication constitutes a finite field, if all
arithmetics are carried out modulo p. The order of a field is defined

Toc JJ II J I Back J Doc Doc I

Section 3: Example of a Finite Field 5

as the number of elements in the set. This field is denoted by GF (p),
which stands for Galois field of order p. Numbers are considered
identical to each other if they give the same remainders after dividing
by p. Closure of the set under these operations is therefore evident.
Given any integer m, its integer remainder after dividing by p is given
in C and C++ by m%p, and by mod(m,p) in Matlab.

As an example, let us take p = 5 and consider the set Z5 which
has elements 0, 1, 2, 3, 4. The addition table is

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 5
2 2 3 4 5 6
3 3 4 5 6 7
4 4 5 6 7 8

Taking mod 5 of the result gives

Toc JJ II J I Back J Doc Doc I

Section 3: Example of a Finite Field 6

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

The multiplication table is

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 6 8
3 0 3 6 9 12
4 0 4 8 12 16

Taking mod 5 of the result gives

Toc JJ II J I Back J Doc Doc I

Section 4: Character Set and Strings 7

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

From the table we see that 3 × 2 ≡ 1 and therefore 3 and 2 are
multiplicative inverses of each other. Thus we have

1−1 = 1, 2−1 = 3, 3−1 = 2, 4−1 = 4.

Notice that the last element of the set 4 is its own inverse. This is
always true because mod ((p − 1)2, p) = mod (p2 − 2p + 1, p) =
mod (1, p) = 1, that means that p − 1 is its own inverse. It is clear
that this is true even if p is not a prime.

4. Character Set and Strings

Computers use the ASCII character set to store basic text. The char-
acter set uses seven of the eight bits in a byte to encode 128 characters.

Toc JJ II J I Back J Doc Doc I

Section 4: Character Set and Strings 8

The first 32 characters are nonprinting control characters, such as tab,
backspace and end-of- line. The 128th character is another nonprint-
ing character representing the delete key. In between these control
characters are 95 printable characters, including a space, 10 digits, 26
lowercase letters, 26 uppercase letters and 32 punctuation marks.

Matlab can easily display all the printable characters, in the order
determined by their ASCII encoding. Start with

x = reshape(32:127,32,3)’

This produces a 3-by-32 matrix.
x =

32 33 34 ... 61 62 63
64 65 66 ... 93 94 95
96 97 98 ... 125 126 127

The char function converts numbers to characters. The statement
c = char(x)

produces
c =

Toc JJ II J I Back J Doc Doc I

Section 4: Character Set and Strings 9

!"#$%&’()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
‘abcdefghijklmnopqrstuvwxyz{|}~

Actually the last element of x is 127, which corresponds to the
nonprinting delete character. We have not try to display it here since
it may appear differently depending on your computer.

The first character in c, char(32), is the blank character. The
last printable character in c, char(126), is the tilde. The characters
representing digits are in the first line of c. In fact

d = char(48:57)

displays a ten-character string
d =

0123456789

This string can be converted to the corresponding numerical values
with double or real. The statement

double(d) - ’0’

produces
0 1 2 3 4 5 6 7 8

Toc JJ II J I Back J Doc Doc I

Section 4: Character Set and Strings 10

Comparing the second and third line of c, we see that the ASCII
encoding of the lowercase letters is obtained by adding 32 to the ASCII
encoding of the uppercase letters. Understanding this encoding allows
us to use vector and matrix operations in Matlab to manipulate text.

Our encryption technique involves modular arithmetic. All the
quantities involved are integers and the result of any arithmetic op-
eration is reduced by taking the remainder or modulus with respect
to a prime number, p. The Matlab functions rem(x,y) and mod(x,y)
both compute the remainder if x is divided by y. They produce the
same result if x and y have the same sign; the result also has that
sign. But if x and y have opposite signs, then rem(x,y) has the same
sign as x, while mod(x,y) has the same sign as y. Thus we will be
using the mod function here. Here is a table.
x = [37 -37 37 -37]’;
y = [10 10 -10 -10]’;
r = [x y rem(x,y) mod(x,y)]

produces
37 10 7 7

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 11

-37 10 -7 3
37 -10 7 -3

-37 -10 -7 -7

5. The m = 2 Hill Cipher

We have chosen to encrypt text that uses the entire ASCII character
set, not just the letters. There are 95 such characters. The next
larger prime number is p = 97, so we represent the p characters by the
integers 0:p-1 and do arithmetic mod p. The characters are encoded
two at a time. Each pair of characters is represented by a 2-vector, x.
For example, suppose the text contains the pair of letters ’TV’. The
ASCII values for this pair of letters are 84 and 86. Subtracting 32 to
make the representation start at 0 produces the column vector

x = 52
54

The encryption is done with a 2-by-2 matrix-vector multiplication
over the integers mod p.

y = Ax; mod p

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 12

where A is the matrix
A = 71 2

2 26

For our example, the product Ax is
Ax = 3800

1508

If this is reduced mod p the result is
y = 17

53

Converting this back to characters by adding 32 produces ’1U’. Now
comes the interesting part. Over the integers modulo p, the matrix A
is its own inverse. That is if

y = Ax; mod p

then
x = Ay; mod p

In other words, in arithmetic mod p, A2 is the identity matrix. You
can check this with Matlab:

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 13

p = 97;
A = [71 2; 2 26];
I = mod(A^2,p)

produces
I =

1 0
0 1

We can also directly find A−1. Since A is a 2×2 matrix, its inverse
is given by

A−1 = (det A)−1

[
a22 −a12

−a21 a11

]
,

where the determinant of A is given by detA = a11a22 − a21a12.
Again remember that all operations must be carried out in mod p
(=97) arithmetic.

For the above A, we have detA = 71 × 26 − 2 × 2 = 1842 = 96.
Since 96 = 97 − 1, and using a result that we proved earlier, we see

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 14

that 96−1 = 96. Therefore

A−1 = 96
[

26 −2
−2 71

]
=

[
2496 −192
−192 6816

]
=

[
71 2
2 26

]
.

Thus the inverse of A is indeed A itself.
The fact that A is its own inverse means that the encryption pro-

cess is its own inverse. The same function can be used to both encrypt
and decrypt a message.

The following Matlab function program named crypto.m is an im-
plementation of the above m = 2 Hill cipher. The function begins
with a preamble.

function y = crypto(x)
% CRYPTO Cryptography example.
% y = crypto(x) converts an ASCII text string into another
% coded string. The function is its own inverse, so
% crypto(crypto(x)) gives x back.
% See also: ENCRYPT.

A comment precedes the statement that assigns the prime p.

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 15

% Use a two-character Hill cipher with arithmetic
% modulo 97, a prime.
p = 97;

The conversion from characters to numerical values is done by
% Convert printable ASCII text to integers mod p.
space = 32;
delete = 127;
k = find(x >= delete);
x(k) = x(k)-delete;
x = mod(real(x-space),p);

Prepare for the matrix-vector product by forming a matrix with two
rows and lots of columns.

% Reshape into a matrix with 2 rows and
% floor(length(x)/2) columns.
n = 2*floor(length(x)/2);
X = reshape(x(1:n),2,n/2);

All this preparation has been so that we can do the actual finite field
arithmetic quickly and easily in Matlab.

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 16

% Encode with matrix multiplication modulo p.
A = [71 2; 2 26];
Y = mod(A*X,p);

Finally, convert the numbers back to printable characters.
% Reshape into a single row.
y = reshape(Y,1,n);
% If length(x) is odd, encode the last character.
% Recall that (p-1) is its own inverse!
if length(x) > n

y(n+1) = mod((p-1)*x(n+1),p);
end
% Convert to printable ASCII characters.
y = char(y+space);
k = find(y >= delete);
y(k) = y(k)+delete;

As an illustration, let’s follow the computation of y = crypto(’Hello
world’). We begin with a character string.

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 17

x = ’Hello world’

This is converted to an integer vector.
x =

40 69 76 76 79 0 87 79 82 76 68

The length(x) is odd, so the reshaping temporarily ignores the last
element.

X =
40 76 79 87 82
69 76 0 79 76

A conventional matrix-vector multiplication A*X produces an inter-
mediate matrix.

2978 5548 5609 6335 5974
1874 2128 158 2228 2140

Then the mod(.,p) operation produces
Y =

68 19 80 30 57
31 91 61 94 6

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 18

This is rearranged to a row vector.
y =

68 31 19 91 80 61 30 94 57 6

Now the last element of x is encoded by itself and attached to the end
of y.

y =
68 31 19 91 80 61 30 94 57 6 29

Finally, y is converted back to a character string to produce the en-
crypted result.

y = ’d?3{p]>~Y&=’

If we now compute crypto(y), we get back our original ’Hello world’
message.

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 19

References

[1] Most the materials here are adopted from C. Moler, Numerical
Computing with Matlab at the Mathworks site.

[2] G. Birkhoff, G. and S. MacLane, A Survey of Modern Algebra, 5th
edition New York: Macmillan, p. 413, 1996.

[3] D. Stinson Cryptographt: Theory and Practice, 2nd edition, CRC
press, 2002.

Toc JJ II J I Back J Doc Doc I

http://www.mathworks.com/moler/
http://www.cacr.math.uwaterloo.ca/~dstinson/CTAP.html

	Table of Contents
	1 Introduction
	2 Arithmetic over a finite field
	3 Example of a Finite Field
	4 Character Set and Strings
	5 The m=2 Hill Cipher

