SOLUTION FOR ASSIGNMENT 1

Problem 1

(a) The characteristic polynomial is given by

$$\det \begin{pmatrix} 1-\lambda & 4\\ 1 & 1-\lambda \end{pmatrix} = (1-\lambda)^2 - 4 = \lambda^2 - 2\lambda - 3 = 0.$$

(b) The roots of the characteristic equation are given by

$$1 - \lambda = \pm 2,$$

therefore they are given by 3 and -1.

- (c) Thus the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -1$.
- (d) For eigenvalue $\lambda_1 = 3$, we obtain from the first equation of $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ the relation

$$(1-3)x_1 + 4x_2 = 0$$

from which we have $x_1 = 2x_2$. The eigenvector is then given by

$$\mathbf{x}_1 = \left[\begin{array}{c} 1\\ \frac{1}{2} \end{array} \right].$$

if we use the infinite norm, and by

$$\mathbf{x}_1 = \left[\begin{array}{c} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{array} \right].$$

if we use the Euclidean norm.

For eigenvalue $\lambda_2 = -1$, we obtain from the first equation of $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ the relation

$$(1+1)x_1 + 4x_2 = 0$$

from which we have $x_1 = -2x_2$. The eigenvector is then given by

$$\mathbf{x}_2 = \left[\begin{array}{c} 1\\ \frac{-1}{2} \end{array} \right].$$

if we use the infinite norm, and by

$$\mathbf{x}_2 = \left[\begin{array}{c} \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} \end{array} \right].$$

if we use the Euclidean norm.

(e) We use the normalized power iteration with starting vector

$$\mathbf{x}^{(0)} = \left[\begin{array}{c} 1\\1 \end{array} \right].$$

The first iteration gives

$$\mathbf{A}\mathbf{x}^{(0)} = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}.$$

This gives the vector

$$\mathbf{x}^{(1)} = \left[\begin{array}{c} 1\\ \frac{2}{5} \end{array}\right]$$

using the infinite norm.

The second iteration gives

$$\mathbf{A}\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{2}{5} \end{bmatrix} = \begin{bmatrix} \frac{13}{5} \\ \frac{7}{5} \end{bmatrix}.$$

This gives the vector

$$\mathbf{x}^{(2)} = \begin{bmatrix} 1\\ \frac{7}{13} \end{bmatrix}$$

using the infinite norm. The vector is clearly approaching the dominant eigenvector \mathbf{x}_1 .

(f) Result from a numerical calculation using a tolerance of 1×10^{-4} is shown below.

it	eigenvalue	eigenvector	
1	3.6172	1.3823	0.55291
2	2.8294	1.2702	0.68397
3	3.0603	1.309	0.63856
4	2.9803	1.2963	0.65349
5	3.0066	1.3006	0.64849

6 0.65016 2.9978 1.2991 7 3.0007 1.2996 0.6496 8 2.9998 1.2994 0.64979 9 3.0001 1.2995 0.64973 10 3 1.2995 0.64975 evec = 1.2995 0.64975 eval = 3

This eigenvector is not properly normalized. If we normalize it according to the infinite norm:

we indeed obtain convergence to the dominant eigenvector \mathbf{x}_1 .

(g) Using the approximate eigenvector

$$\mathbf{x} = \left[\begin{array}{c} 1\\1 \end{array} \right],$$

the Rayleigh quotient is

$$\lambda = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \frac{\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix}}{2} = \frac{7}{2} = 3.5.$$

The resulting approximation for the eigenvalue is getting close to 3.

(h) Inverse iteration using the function InverseIterationF.m yields the result:

it		eigenvector		eigenvalue
	1	1.0405	0	0.96104
	2	1.0845	-1.0845	-0.31982
	3	1.0577 -	-0.42307	-1.7089

4	1.0638	-0.57279	-0.86172
5	1.0615	-0.51782	-1.0535
6	1.0622	-0.53551	-0.98308
7	1.062	-0.52955	-1.0057
8	1.0621	-0.53153	-0.9981
9	1.0621	-0.53087	-1.0006
10	1.0621	-0.53109	-0.99979
11	1.0621	-0.53101	-1.0001
12	1.0621	-0.53104	-0.99998
evec =			
1.0621			
-0.53104			
eval =			
-1			

Normalizing the eigenvector using the infinite norm gives

which is very close to the other eigenvector \mathbf{x}_2 .

(i) Inverse iteration with a shift $\sigma=2$ using the function ShiftedInverseIterationF.m yields

it	eigenvector	eige	eigenvalue	
1	1.5097	0.60389	1.104	
2	1.3508	0.72737	0.96861	
3	1.4049	0.68533	1.0108	
4	1.387	0.69924	0.99644	
5	1.393	0.69459	1.0012	
6	1.391	0.69614	0.9996	
7	1.3917	0.69562	1.0001	
8	1.3914	0.6958	0.99996	
9	1.3915	0.69574	1	
evector =				
0.89443				
0.4472				

evalue =

We have convergence to the eigenvalue $\lambda_1 = 3$. If the eigenvector is normalized according to the infinite norm, then we have

3

which is very close to the eigenvector \mathbf{x}_1 . This is expected since the distance from $\lambda_1(=3)$ to $\sigma(=2)$ is 1, while the distance from $\lambda_2(=-1)$ to $\sigma(=2)$ is 3. The iteration indeed converges to the eigenvector whose eigenvalue is closest to σ .