SOLUTION FOR ASSIGNMENT 1

Problem 1

(a) The characteristic polynomial is given by

$$
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 4 \\
1 & 1-\lambda
\end{array}\right)=(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-3=0 .
$$

(b) The roots of the characteristic equation are given by

$$
1-\lambda= \pm 2
$$

therefore they are given by 3 and -1 .
(c) Thus the eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=-1$.
(d) For eigenvalue $\lambda_{1}=3$, we obtain from the first equation of $\mathbf{A x}=\lambda \mathbf{x}$ the relation

$$
(1-3) x_{1}+4 x_{2}=0,
$$

from which we have $x_{1}=2 x_{2}$. The eigenvector is then given by

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
\frac{1}{2}
\end{array}\right] .
$$

if we use the infinite norm, and by

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}}
\end{array}\right] .
$$

if we use the Euclidean norm.
For eigenvalue $\lambda_{2}=-1$, we obtain from the first equation of $\mathbf{A x}=\lambda \mathbf{x}$ the relation

$$
(1+1) x_{1}+4 x_{2}=0,
$$

from which we have $x_{1}=-2 x_{2}$. The eigenvector is then given by

$$
\mathbf{x}_{2}=\left[\begin{array}{c}
1 \\
\frac{-1}{2}
\end{array}\right] .
$$

if we use the infinite norm, and by

$$
\mathbf{x}_{2}=\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{-1}{\sqrt{5}}
\end{array}\right] .
$$

if we use the Euclidean norm.
(e) We use the normalized power iteration with starting vector

$$
\mathbf{x}^{(0)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

The first iteration gives

$$
\mathbf{A x}^{(0)}=\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
2
\end{array}\right] .
$$

This gives the vector

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
\frac{2}{5}
\end{array}\right]
$$

using the infinite norm.
The second iteration gives

$$
\mathbf{A} \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
\frac{2}{5}
\end{array}\right]=\left[\begin{array}{c}
\frac{13}{5} \\
\frac{7}{5}
\end{array}\right] .
$$

This gives the vector

$$
\mathbf{x}^{(2)}=\left[\begin{array}{c}
1 \\
\frac{7}{13}
\end{array}\right]
$$

using the infinite norm. The vector is clearly approaching the dominant eigenvector \mathbf{x}_{1}.
(f) Result from a numerical calculation using a tolerance of 1×10^{-4} is shown below.

it	eigenvalue		eigenvector	
1	3.6172	1.3823	0.55291	
2	2.8294	1.2702	0.68397	
3	3.0603	1.309	0.63856	
4	2.9803	1.2963	0.65349	
5	3.0066	1.3006	0.64849	

```
\begin{tabular}{rrrr}
6 & 2.9978 & 1.2991 & 0.65016 \\
7 & 3.0007 & 1.2996 & 0.6496 \\
8 & 2.9998 & 1.2994 & 0.64979 \\
9 & 3.0001 & 1.2995 & 0.64973 \\
10 & 3 & 1.2995 & 0.64975
\end{tabular}
```

```
evec =
```

evec =
1.2995
1.2995
0.64975
0.64975
eval =

```
eval =
```

3

This eigenvector is not properly normalized. If we normalize it according to the infinite norm:

```
evec/(max(abs(evec)))
```

ans $=$

1
0.50001
we indeed obtain convergence to the dominant eigenvector \mathbf{x}_{1}.
(g) Using the approximate eigenvector

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

the Rayleigh quotient is

$$
\lambda=\frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\frac{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]}{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]}=\frac{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
2
\end{array}\right]}{2}=\frac{7}{2}=3.5 .
$$

The resulting approximation for the eigenvalue is getting close to 3 .
(h) Inverse iteration using the function InverseIterationF.m yields the result:

it	eigenvector			
	eigenvalue			
1	1.0405	0	0.96104	
2	1.0845	-1.0845	-0.31982	
	1.0577	-0.42307	-1.7089	

```
                            4 1.0638 -0.57279 -0.86172
                    5 1.0615 -0.51782 -1.0535
                    6 1.0622 -0.53551 -0.98308
                    7 1.062 -0.52955 -1.0057
                    8 1.0621 -0.53153 -0.9981
                    9 1.0621 -0.53087 -1.0006
                    10 1.0621 -0.53109 -0.99979
                    11 1.0621 -0.53101 -1.0001
                1 2
evec =
            1.0621
        -0.53104
eval =
```

 -1
 Normalizing the eigenvector using the infinite norm gives

```
evec/(max(abs(evec)))
ans =
\[
-0.50001
\]
```

which is very close to the other eigenvector \mathbf{x}_{2}.
(i) Inverse iteration with a shift $\sigma=2$ using the function ShiftedInverseIterationF.m yields
it $\quad 1$
eigenvector
1.5097
1.3508
0.60389
eigenvalue
1
2
3
4
5
6
7
8
9
1.4049
0.72737
0.68533
1.387
0.69924
0.69459

1.391
0.69614
1.3917
0.69562
1.3914
0.6958
1.3915
0.69574
0.96861
1.0108
1.0012
0.9996
1.0001
0.99996

1

evector =

0.89443
0.4472

```
evalue =
```

We have convergence to the eigenvalue $\lambda_{1}=3$. If the eigenvector is normalized according to the infinite norm, then we have

```
evector/(max(abs(evector)))
ans =
    1
    0.49998
```

which is very close to the eigenvector \mathbf{x}_{1}. This is expected since the distance from $\lambda_{1}(=3)$ to $\sigma(=2)$ is 1 , while the distance from $\lambda_{2}(=-1)$ to $\sigma(=2)$ is 3 . The iteration indeed converges to the eigenvector whose eigenvalue is closest to σ.

