ASSIGNMENT 2

Due October 5, 2004, before 11:00 am

Problem 2

This problem is a modified version of Computer Problem 4.14 on p. 213 of Heath's book.
(a) The matrix exponential function of an $n \times n$ matrix \mathbf{A} is defined by the infinite series

$$
\exp (\mathbf{A})=\sum_{k=0}^{\infty} \frac{1}{k!}(\mathbf{A})^{k}=\mathbf{I}+\mathbf{A}+\frac{1}{2!} \mathbf{A}^{2} \cdots+\frac{1}{k!} \mathbf{A}^{k} \cdots .
$$

Write a Matlab program to evaluate $\exp (\mathbf{A})$ using the foregoing series definition.
(b) An alternate way to compute the matrix exponential uses the result

$$
\mathbf{A X}=\mathbf{X D}
$$

in section 4.2.2 so that \mathbf{A} has the eigenvalue-eigenvector decomposition

$$
\mathbf{A}=\mathbf{X D X}^{-1}
$$

Therefore

$$
\begin{aligned}
\exp (\mathbf{A}) & =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\mathbf{X D X}^{-1}\right)^{k}=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\mathbf{X D X}^{-1} \mathbf{X D X}^{-1} \cdots \mathbf{X D X}^{-1} \mathbf{X D X}^{-1}\right) \\
& =\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{X D}^{\mathbf{k}} \mathbf{X}^{-1}=\mathbf{X}\left(\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{D}^{\mathbf{k}}\right) \mathbf{X}^{-1}=\mathbf{X} \exp (\mathbf{D}) \mathbf{X}^{-1}
\end{aligned}
$$

where the diagonal matrix $\exp (\mathbf{D})$ is given by $\operatorname{diag}\left(e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}\right)$. In the case where \mathbf{A} is symmetric (Hermitian), \mathbf{X}^{-1} is simply given by $\mathbf{X}^{T}\left(\mathbf{X}^{H}\right)$. Write a program to evaluate $\exp (\mathbf{A})$ using this method.

Test both methods using each of the following test matrices:

$$
\mathbf{A}_{1}=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{A}_{1}=\left[\begin{array}{ll}
-49 & 24 \\
-64 & 31
\end{array}\right] .
$$

Also test using an $n \times n$ matrix with randomly generated real elements. You should also try to run you programs using progressively large matrix sizes. What happens when n is large? Consider the relative errors in each case by comparing with the results from using Matlab's built-in library routine expm for computing the matrix exponential. [Note that this routine is different than the Matlab function exp, which carries out an element-wise exponentiation.] The runtime for 2×2 matrices is too short to be determined accurately. However one can get an accurate measure when n is large. Use Matlab's tic and toc functions to time the 3 different ways of computing the matrix exponential. Which of the two methods [(a) or (b)] is more accurate and robust? Try to explain why.

