

ASSIGNMENT 2

Due October 5, 2004, before 11:00 am

Problem 2

This problem is a modified version of Computer Problem 4.14 on p. 213 of Heath's book.

(a) The matrix exponential function of an $n \times n$ matrix \mathbf{A} is defined by the infinite series

$$\exp(\mathbf{A}) = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{A})^k = \mathbf{I} + \mathbf{A} + \frac{1}{2!} \mathbf{A}^2 + \frac{1}{3!} \mathbf{A}^3 + \dots$$

Write a Matlab program to evaluate $\exp(\mathbf{A})$ using the foregoing series definition.

(b) An alternate way to compute the matrix exponential uses the result

$$\mathbf{AX} = \mathbf{XD},$$

in section 4.2.2 so that \mathbf{A} has the eigenvalue-eigenvector decomposition

$$\mathbf{A} = \mathbf{X}\mathbf{D}\mathbf{X}^{-1}.$$

Therefore

$$\begin{aligned} \exp(\mathbf{A}) &= \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{X}\mathbf{D}\mathbf{X}^{-1})^k = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{X}\mathbf{D}\mathbf{X}^{-1}\mathbf{X}\mathbf{D}\mathbf{X}^{-1}\dots\mathbf{X}\mathbf{D}\mathbf{X}^{-1}\mathbf{X}\mathbf{D}\mathbf{X}^{-1}) \\ &= \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{X}\mathbf{D}^k \mathbf{X}^{-1} = \mathbf{X} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{D}^k \right) \mathbf{X}^{-1} = \mathbf{X} \exp(\mathbf{D}) \mathbf{X}^{-1}, \end{aligned}$$

where the diagonal matrix $\exp(\mathbf{D})$ is given by $\text{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$. In the case where \mathbf{A} is symmetric (Hermitian), \mathbf{X}^{-1} is simply given by \mathbf{X}^T (\mathbf{X}^H). Write a program to evaluate $\exp(\mathbf{A})$ using this method.

Test both methods using each of the following test matrices:

$$\mathbf{A}_1 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{A}_2 = \begin{bmatrix} -49 & 24 \\ -64 & 31 \end{bmatrix}.$$

Also test using an $n \times n$ matrix with randomly generated real elements. You should also try to run your programs using progressively large matrix sizes. What happens when n is large? Consider the relative errors in each case by comparing with the results from using Matlab's built-in library routine `expm` for computing the matrix exponential. [Note that this routine is different than the Matlab function `exp`, which carries out an element-wise exponentiation.] The runtime for 2×2 matrices is too short to be determined accurately. However one can get an accurate measure when n is large. Use Matlab's `tic` and `toc` functions to time the 3 different ways of computing the matrix exponential. Which of the two methods [(a) or (b)] is more accurate and robust? Try to explain why.