
SOLUTION FOR ASSIGNMENT 2

Problem 2

There are a few ways to compute the matrix exponential function of an n× n
matrix A by summing up the series

exp(A) =
∞∑

k=0

1

k!
(A)k = I + A +

1

2!
A2 · · ·+ 1

k!
Ak · · · ,

up to a maximum of M terms. One expect the accuracy of the result to increase
with M . The differences of these ways have to do with the way how the series is
summed up.

The general term of the series is 1
k!
Ak. Since for any given integer k and any

square matrix A, there are functions to compute Ak and k! in Matlab, so one may
simply transcribe the formula into a program, as shown as follows.

% 1.1 An even dumber implementation

EXPMADUMBER = eye(n); % initialize sum to identity matrix

AK = eye(n); % initialize AK to I

fac = 1.0; % initialize k! to 1

for k=1:maxLoop

AK = A^k; % compute A^k

fac = factorial(k); % compute k!

EXPMADUMBER = EXPMADUMBER+AK/fac; % compute & accumulate A^k / k!

end

Here the maximum number of terms to be summed has been initialize:

maxLoop = 30; % max number of terms summed in the series method

This is probably the dumbest way to sum up the terms. For the k-th term, the
computation essentially involves k matrix multiplications of A with itself in order
to get AK and k ordinary multiplications to get fac. (Matlab actually uses better
algorithms to compute these quantities using fewer number of operations.) The
calculation also involves a division of a matrix by a scalar and a matrix addition.

Instead of repeatedly multiplying A with itself, and repeatedly multiply 1 ×
2 × · · · to obtain the factorial, a much better way is to have a variable AK that
successively compute A to a higher and higher power, and a variable fac for the
factorial. The resulting Matlab code fragment is shown below.

1



% 1. Compute by summing its series expansion:

% 1.1 A good implementation

EXPMADUMB = eye(n); % initialize sum to identity matrix

AK = eye(n); % initialize AK to I

fac = 1.0; % initialize k! to 1

for k=1:maxLoop

AK = AK*A; % compute A^k

fac = fac*double(k); % compute k!

EXPMADUMB = EXPMADUMB+AK/fac; % compute & accumulate A^k / k!

end

To compute the k-th term, only one matrix multiplication is need to compute Ak,
and only one ordinary multiplication is needed to compute k!. The calculation also
involves a division of a matrix by a scalar and a matrix addition. The most time
consuming part of the calculation (involving matrix multiplication) has now been
made much more efficient.

An even better implementation can be obtained by noticing that if we already
have computed the (k − 1)-th term, then the kth term can be obtained by simply
multiplying by A and dividing by k. The resulting code fragment is shown below.

% 1.3 The best method for summing the series

SK = eye(n); % the kth term in the series for exp(A)

EXPMA1 = eye(n);

for k=1:maxLoop

ik = 1/k; % a speed-up of several percent

SK = ik*A*SK;

EXPMA1 = EXPMA1 + SK;

end

Although when compared with the previous implementation in terms of the number
of operations per loop, this implementation is faster only because it has one fewer
ordinary multiplications (since the factorial is not computed separately). Although
this increase in speed is hardly noticeable, it is better in that it avoids the overflow
problem when maxLoop is large.

For A1 both methods yield results essentially identical to the result obtained
from Matlab:

EXPMAMATLAB =

11.4019093758234 -8.68362754736431

-8.68362754736431 11.4019093758234

2



However in the case of A2, the relative error for method 1 is about 1 × 10−9,
while the relative error for method 2 is about 1 × 10−14. The actual output from
Matlab is:

EXPMAMATLAB =

-0.735758758144693 0.551819099658051

-1.47151759908814 1.10363824071548

For a randomly created matrix whose elements lie between 0 and 1, the elements
of exp(A) become large. It is better to consider the relative errors in the resulting
matrix when we compare with the result obtained from Matlab’s expm function.

When one is testing to see which of the two methods run faster, it is important
to use a matrix large enough so that the run time is at least a good fraction
of a second since Matlab’s timing mechanism may not be accurate to tens of
milliseconds. It is also important to use a value for maxLoop that just gives results
having roughly the same errors as for method two (roughly like 1 × 10−14). It is
unfair for method one if a higher value is used. We should also not compare the
run-times if too small a value is used since the results will have different accuracies.
With this in mind, for example, for a matrix of size n = 100 and maxLoop= 120,
method 2 is found to be faster than method 1 by about a factor of 2.

Method 2 is more accurate and robust in general. When the matrix has eigen-
values of vastly different magnitudes (for example A2 whose eigenvalues are −17
and −1, or when we use a random matrix of a large size), method 1 gives inac-
curate results. This is because when we repeated multiply the matrix by itself,
the elements will have magnitudes differing by many orders of magnitudes. Some
accuracy is then lost.

This does not happen for A1 since its two eigenvalues (3 and 1) have more
comparable magnitudes. The results for method 1 is therefore also less robust
since the accuracy of the results depends on the relative sizes of the eigenvalues of
the matrix.

3


