ASSIGNMENT 3

Due October 21, 2004, before 11:00 am

Problem 3

This problem is essentially the same as Computer Problem 6.10 on p. 304 of Heath's book.

Let \mathbf{A} be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. (Note that λ_{n} is the dominant eigenvalue and λ_{1} is the least dominant eigenvalue.) It can be shown that the critical points of the Rayleigh quotient (see Section 4.5.3) are eigenvectors of \mathbf{A}, in particular

$$
\begin{aligned}
& \lambda_{1}=\min _{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \\
& \lambda_{n}=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
\end{aligned}
$$

with the minimum and maximum occurring at the corresponding eigenvectors. Thus we can in principle compute the extreme eigenvalues and corresponding eigenvectors of A using any suitable method for optimization.
(a) Use the steepest descent method for unconstraint optimization to compute the extreme eigenvalues and corresponding eigenvectors of the matrix

$$
\mathbf{A}_{1}=\left[\begin{array}{lll}
6 & 2 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Is the solution unique in each case? Why or why not?
(b) The foregoing characterization of λ_{1} and λ_{n} remains valid if we restrict the vector \mathbf{x} to be normalized by taking $\mathbf{x}^{T} \mathbf{x}=1$. Repeat part a, but apply the steepest descent method for constrained optimization to impose this normalization constraint.

