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Abstract

A new heuristic approach for minimizing possibly nonlinear and non differentiable continuous space
functions is presented. By means of an extensive testbed, which includes the De Jong functions, it will be
demonstrated that the new method converges faster and with more certainty than Adaptive Simulated
Annealing as well as the Annealed Nelder&Mead approach, both of which have a reputation for being
very powerful. The new method requires few control variables, is robust, easy to use and lends itself very
well to parallel computation.
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Introduction
Problems which involve global optimization over continuous spaces are ubiquitous throughout the
scientific community. In general, the task is to optimize certain properties of a system by
pertinently choosing the system parameters. For convenience, a system's parameters are usually
represented as a vector. The standard approach to an optimization problem begins by designing
an objective function that can model the problem's objectives while incorporating any constraints.
Especially in the circuit design community, methods are in use which do not need an objective
function [1], [2], [3]. Although these methods can make formulating a problem simpler, they are
usually inferior to techniques which make full use of an objective function. Consequently, we
restrict ourselves to optimization methods which fully use the objective function. In most cases,
the objective function is designed to transform the optimization problem into a minimization task.
To this end, we will limit our investigation in the following to minimization problems.

When the objective function is nonlinear and non differentiable, direct search approaches are the
methods of choice. The best known of these are the algorithms by Nelder&Mead [4], by
Hooke&Jeeves [4], genetic algorithms [5], and evolutionary algorithms [6], [7] with the latter being
truly continuous counterparts of genetic algorithms. At the heart of every direct search method is
a strategy that generates variations of the parameter vectors. Once a variation is generated, a
decision must be made whether or not to accept the newly derived parameters. All basic direct
search methods use the greedy criterion to make this decision. Under the greedy criterion, a new
parameter vector is accepted if and only if it reduces the value of the objective function.
Although the greedy decision process converges fairly fast, it runs the risk of becoming trapped
by a local minimum. Inherently parallel search techniques like genetic and evolutionary
algorithms have some built-in safeguards to forestall misconvergence. By running several
vectors simultaneously, superior parameter configurations can help other vectors escape local
minima. Another method which can extricate a parameter vector from a local minimum is
Simulated Annealing [8], [9], [10]. Annealing relaxes the greedy criterion by occasionally
permitting an uphill move. Such moves potentially allow a parameter vector to climb out of a
local minimum. As the number of iterations increases, the probability of accepting an uphill move
decreases. In the long run, this leads to the greedy criterion. While all direct search methods lend
themselves to annealing, it has mostly been used just for the Random Walk, which itself is the
simplest case of an evolutionary algorithm [6]. Nevertheless, attempts have been made to anneal
other direct searches like the method of Nelder&Mead [10] and genetic algorithms [8], [11].

Users generally demand that a practical optimization technique should fulfill three requirements.
First, the method should find the true global minimum, regardless of the initial system parameter
values. Second, convergence should be fast. Third, the program should have a minimum of
control parameters so that it will be easy to use. In our search for a fast and easy to use "sure
fire" technique, we developed a method which is not only astonishingly simple, but also performs
extremely well on a wide variety of test problems. It is inherently parallel and hence lends itself to
computation via a network of computers or processors. The basic strategy employs the difference
of two randomly selected parameter vectors as the source of random variations for a third
parameter vector. In the following, we present a more rigorous description of the new
optimization method which we call Differential Evolution.
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Problem Formulation
Consider a system with the real valued properties

gm; m = 0, 1, 2, ... , P-1 (1)

which constitute the objectives of the system to be optimized.

Additionally, there may be real valued constraints

gm; m = P, P+1, ... , P+C-1 (2)

which describe properties of the system that need not be optimized but neither shall be degraded. For
example, one may wish to design a mobile phone with the dual objectives of maximizing the transmission
power g1 and minimizing the noise g2 of the audio amplifier while simultaneously keeping the battery life
g3 above a certain threshold. The properties g1 and g2 represent objectives to be optimized whereas g3
is a constraint. Let all properties of the system be dependent on the real valued parameters

xj; j = 0, 1, 2, ... , D-1. (3)

In the case of the mobile phone the parameters could be resistor and capacitor values. For most
technical systems realizability requires

xj ∈  [xjl, xjh] . (4)

Usually, restrictions on the xj will be incorporated into the collection gm, m≥P, of constraints.

Optimization of the system means  to vary the D-dimensional parameter vector

x = (x0, x1, ... , xD-1)T (5)

until the properties gm are optimized and the constraints gm, m≥P, are met. An optimization task can

always be reformulated as the minimization problem

min fm(x) (6)

where fm(x) represents the function by which the property gm is calculated and its optimization or
constraint preservation is represented as the minimization of fm(x). All functions fm(x) can be combined
into a single objective function z(x) [2], [12], which usually is computed either via the weighted sum

z x w f xm m
m

P C

( ) ( )= ⋅
=

+ −

∑
0

1

(7)

or via z x w f xm m( ) max ( )= ⋅� � (8)

with wm > 0. (9)

The weighting factors wm are used to define the importance associated with the different objectives and
constraints as well as to normalize different physical units. The optimization task can now be restated as

min z(x) (10)

The min-max formulation (8) and (10) guarantees that all local minima, the Pareto critical points,
including the possibly multiple global minima, the Pareto points, can at least theoretically be found [2],
[12]. For the objective function (7) and (10) this is true only if the region of realizability of x is convex [1],
[2], which in general does not apply in most technical problems.
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The Method of Differential Evolution
Differential Evolution (DE) is a novel parallel direct search method which utilizes NP parameter vectors

xi,G, i = 0, 1, 2, ... , NP-1. (11)

as a population for each generation G. NP doesn't change during the minimization process. The initial
population is chosen randomly if nothing is known about the system. As a rule, we will assume a uniform
probability distribution for all random decisions unless otherwise stated. In case a preliminary solution is
available, the initial population is often generated by adding normally distributed random deviations to the
nominal solution xnom,0. The crucial idea behind DE is a new scheme for generating trial parameter
vectors. DE generates new parameter vectors by adding the weighted difference vector between two
population members to a third member. If the resulting vector yields a lower objective function value than
a predetermined population member, the newly generated vector replaces the vector with which it was
compared. The comparison vector can, but need not be part of the generation process mentioned above.
In addition the best parameter vector xbest G,  is evaluated for every generation G in order to keep track of

the progress that is made during the minimization process.

Extracting distance and direction information from the population to generate random deviations results
in an adaptive scheme with excellent convergence properties. We tried several variants of DE, the two
most promising of which we subsequently present in greater detail.

Scheme DE1

Our first variant of DE works as follows: for each vector xi G, , i = 0,1,2,...,NP-1, a trial vector v is

generated according to

v x F x xr G r G r G= + ⋅ −
1 2 3, , ,( ) , (12)

with r r r NP1 2 3 0 1, , ,∈ − , integer and mutually different, and F > 0. (13)

The integers r1, r2 and r3 are chosen randomly from the interval [0, NP-1] and are different from the
running index i. F is a real and constant factor which controls the amplification of the differential variation
( ), ,x xr G r G2 3

− .Fig. 1 shows a two dimensional example that illustrates the different vectors which play a

part in DE1.
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Fig.1: Two dimensional example of an objective function showing its contour lines and the process for
generating v in scheme DE1.

In order to increase the diversity of the parameter vectors, the vector

u u u uD
T= ( , ,..., )1 2 (14)

with u
v for j n n n L

x otherwise
j

j D D D

i G j

=
= + + −�

�
�

��

, ,...,

( ),

1 1
(15)

is formed where the acute brackets 
D

denote the modulo function with modulus D.

I.e. a certain seuence of the vector elements of u are identical to the elements of v, the other elements of
u acquire the original values of xi G, . Choosing a subgroup of parameters for mutation is similiar to a

process known as crossover in evolution theory. This idea is illustrated in Fig. 2 for D=7, n=2 and L=3.
The starting index n in (15) is a randomly chosen integer from the interval [0, D-1]. The integer L is drawn

from the interval [0, D-1] with the probability Pr(L=ν) = (CR)ν. CR ∈  [0,1] is the crossover probability and

constitutes a control variable for the DE1-scheme. The random decisions for both n and L are made anew
for each trial vector v.
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Fig. 2: Illustration of the crossover process for D=7, n=2 and L=3.

In order to decide whether the new vector u shall become a population member of generation G+1, it will
be compared to xi G, . If vector u yields a smaller objective function value than xi G, , xi G, +1 is set to u,

otherwise the old value xi G,  is retained.

Scheme DE2

Basically, scheme DE2 works the same way as DE1 but generates the vector v according to

v x x x F x xi G best G i G r G r G= + ⋅ − + ⋅ −, , , , ,( ) ( )λ
2 3

, (16)

introducing an additional control variable λ. The idea behind λ is to provide a means to enhance the
greediness of the scheme by incorporating the current best vector xbest G, . This feature can be useful for

non-critical objective functions. Fig. 3 illustrates the vector-generation process defined by (16). The
construction of u from v and xi G,  as well as the decision process are identical to DE1.
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Fig.3: Two dimensional example of an objective function showing its contour lines and the process for
generating v in scheme DE2.

Competing minimization methods
In order to compare the DE method with other global minimizing strategies, we looked for approaches
where the source code is readily available, which are known to be powerful and which are capable of
coping with nonlinear and non differentiable functions. Two methods in particular piqued our interest. The
first was the annealed version of the Nelder&Mead strategy (ANM) [10] which is appealing because of its
adaptive scheme for generating random parameter deviations. When the annealing part is switched off, a
fast converging direct search method remains which is especially useful for non-critical objective
functions. The basic control variables in ANM are T, the starting temperature, TF, the temperature
reduction factor and NV, the number of random variations at a given temperature level.

The second method of interest was Adaptive Simulated Annealing (ASA) [8] which claims to converge
very quickly and to outperform genetic algorithms on the De Jong test suite [9]. Although ASA provides
more than a dozen control variables, it turned out that just two of them, TEMPERATURE_RATIO_SCALE
(TRS) and TEMPERATURE_ANNEAL_SCALE (TAS), had significant impact on the minimization
process.  We will compare both ANM and ASA to DE1 and DE2. During our research we also wrote an
annealed version of the Hooke&Jeeves method [5] and tested two Monte Carlo methods [3] one of which
used NP parallel vectors and the differential mutation scheme of DE. Although these approaches all
worked, they quickly turned out not to be competitive.

The Testbed
Our function testbed contains the De Jong test functions as presented in [9] plus some additional
functions which present further distinctive difficulties for a global minimizer:
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1) First De Jong function (sphere)

f x x j
j

1
2

0

2

( ) =
=
∑ ; xj ∈  [-5.12, 5.12] (17)

f1(x) is considered to be a very simple task for every serious minimization method. The minimum is
f1(0) = 0.

2) Second De Jong function (Rosenbrock's saddle)

f x x x x2 0
2

1
2

0
2100 1( ) ( ) ( )= ⋅ − + − ; xj ∈  [-2.048, 2.048] (18)

Although f2(x) has just two parameters, it has the reputation of being a difficult minimization
problem. The minimum is f2(1)=0.

3) Third De Jong function (step)

f x x j
j

3
0

4

30( ) .= +
=
∑ ; xj ∈  [-5.12, 5.12] (19)

For f3(x) it is necessary to incorporate the constraints imposed on the xj into the objective function.
We implemented this according to the min-max formulation (8). The minimum is
f3(-5-ε)=0 where ε ∈  [0,0.12]. The step function exhibits many plateaus which pose a considerable

problem for many minimization algorithms.

4) Modified fourth De Jong function (quartic)

f x x jj
j

4
4

0

29

1( ) ( )= ⋅ + +
=
∑ � � η ; xj ∈  [-1.28, 1.28] (20)

This function is designed to test the behavior of a minimization algorithm in the presence of noise.
In the original De Jong function, η is a random variable produced by Gaussian noise having the

distribution N(0,1). According to [9], this function appears to be flawed as no definite global
minimum exists. In response to the problem, we followed the suggestion given in [9] and chose η to

be a random variable with uniform distribution and bounded by [0,1). In contrast to the original
version of De Jong's quartic function, we also included η inside the summation instead of just
adding η to the summation result. This change makes f4(x) more difficult to minimize. The
functional minimum is f4(0) ≤ 30⋅E[η] = 15, where E[η] is the expectation of η.

5) Fifth De Jong function (Shekel's Foxholes)

f x

i x aj ij
j

i

5

6

0

1
0

24

1

0 002
1

( )
.

( )

=
+

+ −
=

= ∑
∑

; xj ∈  [-65.536, 65.536] (21)

with ai0={-32, -16,0,16,32} for i = 0,1,2,3,4 and ai0=ai mod 5, 0

as well as ai1={-32, -16,0,16,32} for i = 0,5,10,15,20 and ai1=ai+k, 1, k=1,2,3,4

The global minimum for this function is f6(-32,-32) ≅  0.998004.
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6) Corana's parabola [8], [13]

f x
d j x j otherwise

z j sgn z j d j if x j z j

j
6

0

3

2

015 0 05 2 005
( )

. ( . ( )) .
=

⋅

⋅ − ⋅ ⋅ − <�

�
�

��
=
∑ ; xj ∈  [-1000, 1000] (22)

with z
x

sgn xj
j

j= +
�

�
�

�

	
� ⋅ ⋅

0 2
0 49999 0 2

.
. ( ) .

and dj = {1,1000,10,100}

f6(x) defines a paraboloid whose axes are parallel to the coordinate axes. It is riddled with a set of
holes that increase in depth the closer one approaches the origin. Any minimization algorithm that
goes strictly downhill will almost always be captured by the holes. The minimum here is f6(x) = 0,
with |xj|<0.05, j=0,1,2,3.

7) Griewangk's function [14]

f x
x x

j
j j

jj
7

2

0

9

0

9

4000 1
1( ) cos= −

+



��


��
+

==
∏∑ ; xj ∈  [-400, 400] (23)

Like test function f6(x), f7(x) has many local minima so that it is very difficult to find the true
minimum  f7(0) = 0.

8) Zimmermann's problem [15]

f x x x8 0 19( ) = − − ; xj > 0, j=1,2 (24)

with ( ) ( )x x0
2

1
23 2 16− + − ≤ (25)

and x x0 1 14⋅ ≤ (26)

Finding the minimum f8(7,2)=0 poses a special problem, because the minimum is located at the
corner of the constrained region defined by (24), (25) and (26).

9) Polynomial fitting problem

f x z x zj
j

j

k

9
0

2

( , ) = ⋅
=
∑  , k integer and >0, (27)

is a polynomial of degree 2k in z with the coefficients xj such that

f x z for z9 1 1 1 1( , ) , ,∈ − ∈ − (28)

and f x z T for zk9 2 1 2 1 2( , ) ( . ) .≥ = ± (29)

with T zk2 ( )  being a Chebychev Polynomial of degree 2k. The Chebychev Polynomials are defined
recursively according to the difference equation T z z T z T zn n n+ −= ⋅ −1 12( ) ( ) ( ) , n integer and > 0,

with the initial conditions T0(z)=1 and T1(z)=z. The solution to the polynomial fitting problem is, of
course, f x z T zk9 2( , ) ( )= , a polynomial which oscillates between -1 and 1 when its argument z is

between -1 and 1. Outside this "tube" the polynomial rises steeply in direction of high positive
ordinate values. The polynomial fitting problem has its roots in electronic filter design [16] and
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challenges an optimization procedure by forcing it to find parameter values with grossly different
magnitudes, something very common in technical systems. In our test suite we employed

T z z z z z8
2 4 6 81 32 160 256 128( ) = − + − + (30)

with T8 1 2 72 6606669( . ) .≅ (31)

as well as

T z z z z z

z z z z

16
2 4 6 8

10 12 14 16

1 128 2688 21504 84480

180224 212992 131072 32768

( ) = − + − + −

+ − +
(32)

with T16 1 2 10558 1450229( . ) .≅ . (33)

and used the weighted sum (7) of squared errors in order to transform the above constrained
optimization problem into an objective function to be minimized. The starting values for the
parameters were drawn randomly from the interval [-100,100] for (30), (31) and [-1000,1000] for
(32), (33).

Test Results
We tried to optimize each of the four algorithms by experimenting to find the control settings which
provided fastest and smoothest convergence. Table I contains our choice of control variable settings for
each minimization algorithm and each test function along with the averaged number of function
evaluations (nfe) which were required to find the global minimum.

fi(x) ANM ASA DE1 DE2 (F=1)

i T TF NV nfe TRS TAS nfe NP F CR nfe NP λ CR nfe

1 0 n.a. 1 95 1⋅10-5 10 397 10 0.5 0.3 490 6 0.95 0.5 392

2 0 n.a. 1 106 1⋅10-5 10000 11275 6 0.95 0.5 746 6 0.95 0.5 615

3 300 0.99 20 90258 1⋅10-7 100 354 10 0.8 0.3 915 20 0.95 0.2 1300

4 300 0.98 30 - 1⋅10-5 100 4812 10 0.75 0.5 2378 10 0.95 0.2 2873

5 3000 0.995 50 - 1⋅10-5 100 1379 15 0.9 0.3 735 20 0.95 0.2 828

6 5⋅106 0.995 100 - 1⋅10-5 100 3581 10 0.4 0.2 834 10 0.9 0.2 1125

7 10 0.99 50 - 1⋅10-5 0.1 - 30 1. 0.3 22167 20 0.99 0.2 12804

8 5 0.95 5 2116 1⋅10-6 300 11864 10 0.8 0.5 1559 10 0.9 0.9 1076

9(k=4) 100 0.95 40 (391373) 1⋅10-6 1000 - 30 0.8 1 19434 30 0.6 1.0 14901

9(k=8) 5⋅104 0.995 150 - 1⋅10-8 700 - 100 0.65 1 165680 80 0.6 1.0 254824

Table I: Averaged number of function evaluations (nfe) required for finding the global minimum. A
hyphen indicates misconvergence and n.a. stands for "not applicable".
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If the corresponding field for the number of function evaluations contains a hyphen, the global minimum
could not be found. If the number is enclosed in parentheses, not all of the test runs provided the global
minimum. We executed ten test runs with randomly chosen initial parameter vectors for each test
function and each minimization.

When the global minimum was 0, we defined the minimization task to be completed once the final value
was obtained with an accuracy better than 10 6− . For f4(x), we chose a value less than 15 to indicate the
global minimum and a value less than 0.998004 in the case of f5(x).

Conclusion
The Differential Evolution method (DE) for minimizing continuous space functions has been introduced
and shown to be superior to Adaptive Simulated Annealing (ASA) [8] as well as the Annealed
Nelder&Mead approach (ANM) [10]. DE was the only technique to converge for all of the functions in our
test function suite. For those problems where ASA or ANM could find the minimum, DE usually
converged faster, especially in the more difficult cases. Since DE is inherently parallel, a further
significant speedup can be obtained if the algorithm is executed on a parallel machine or a network of
computers. This is especially true for real world problems where computing the objective function
requires a significant amount of time.

Despite these already promising results, DE is still in its infancy and can most probably be improved.
Further research might include a mathematical convergence proof like the one that exists for Simulated
Annealing. A theoretically sound analysis to determine why DE converges so well would also be of great
interest. Whether or not an annealed version of DE, or the combination of DE with other optimization
approaches is of practical use, is still unanswered. Finally, it is important for practical applications to gain
more knowledge on how to choose the control variables for DE.
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