ASSIGNMENT 1

Due September 27, 2005, before 11:00 am

Problem 2

This problem is adopted from computer problem 6.9 on page 304 in Heath's book. We want to find a minimum of Rosenbrock's function in two-dimensions,

$$
f(x, y)=100\left(y-x^{2}\right)^{2}+(1-x)^{2} .
$$

(a) Derive an expression for the gradient of f.
(b) Derive an expression for the Hessian of f.
(c) Find the critical point(s) of f and classify them as minimum, maximum or saddle point.
(d) Produce a contour plot showing all the important features of this function.
(e) Find a minimum of f using the conjugate gradient method. You should try using each of the following starting points: $\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T},\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$, and $\left[\begin{array}{ll}2 & 1\end{array}\right]^{T}$. Comment on your numerical findings.

