ASSIGNMENT 6

Due December 1, 2005, before 11:00 am

Problem 6

We want to consider the integrals of the functions

$$
f(x ; k)=x^{k},
$$

from 0 to 1 for $k=0,1, \cdots$.

1. This family of integrals can be done easily by hand. What is the solution as a function of k ?
2. Compute this family of integrals for $k=0,1, \cdots$ numerically using a 4 -point Gauss-Legendre Quadrature rule. Two of the roots are

$$
\frac{\sqrt{525-70 \sqrt{30}}}{35} \quad \frac{\sqrt{525+70 \sqrt{30}}}{35}
$$

and their corresponding weights are

$$
\frac{(18+\sqrt{30})}{36} \quad \frac{(18-\sqrt{30})}{36} .
$$

Recall that for any even-point Gauss-Legendre Quadrature rule, the roots are even and for each positive root there is a root of opposite sign, and they both have the same weights. Plot the absolute value of the relative error as a function of k. Explain your finding in detail.

