Rational-Function Interpolation

Polynomials are not always the best form for representing a function or a set of data points. A rational function, which is defined as a ratio of two polynomials, is often a better choice, especially if the function to be approximated or interpolated has a pole in or near the domain of interest.

Given a set of N data points $\left(t_{1}, y_{1}\right), \cdots,\left(t_{N}, y_{N}\right)$, we seek an interpolation function of the form

$$
r(t)=\frac{p_{m}(t)}{q_{n}(t)}=\frac{a_{m} t^{m}+\cdots+a_{0}}{b_{n} t^{n}+\cdots+b_{0}}
$$

The rational-function interpolation is based on the Bulirsch-Stoer algorithm, which produces a "diagonal" rational function, i.e., a rational function in which either $m=n$ or $m=n-1$, depending on whether the number of data points, N, is even or odd. The algorithm is recursive and has a structure very much like in Newton's divided difference.

The following table shows the algorithm for computing the interpolated values at any specified point for the case of three data points:

$$
\begin{array}{l|ll}
\left(t_{1}, y_{1}\right) & R_{1}=y_{1} \\
\left(t_{2}, y_{2}\right) & R_{2}=y_{2} & R_{12}=R_{2}+\frac{R_{2}-R_{1}}{\frac{t-t_{1}}{t-t_{2}}\left[1-\frac{R_{2}-R_{1}}{R_{2}}\right]-1} \\
\left(t_{3}, y_{3}\right) & R_{3}=y_{3} & R_{23}=R_{3}+\frac{R_{3}-R_{2}}{\frac{t-t_{2}}{t-t_{3}}\left[1-\frac{R_{3}-R_{2}}{R_{3}}\right]-1}
\end{array} \quad R_{123}=R_{23}+\frac{R_{23}-R_{12}}{\frac{t-t_{1}}{t-t_{3}}\left[1-\frac{R_{23}-R_{12}}{R_{23}-R_{2}}\right]-1}
$$

