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Section 1: Introduction 3

1. Introduction

Single-layer networks are capable of solving only linearly separable
classification problems. Researches were aware of this limitation and
have proposed multilayer networks to overcome this. However they
were not able to generalize their training algorithms to these multi-
layer networks until the thesis work of Werbos in 1974. Unfortunately
this work was not known to the neural network community until after
it was rediscovered independently by a number of people in the middle
1980s. The training algorithm, now known as backpropagation (BP),
is a generalization of the Delta (or LMS) rule for single layer percep-
tron to include differentiable transfer function in multilayer networks.
BP is currently the most widely used NN.

2. Multilayer Perceptron

We want to consider a rather general NN consisting of L layers (of
course not counting the input layer). Let us consider an arbitrary
layer, say `, which has N` neurons X

(`)
1 , X

(`)
2 , . . . , X

(`)
N`

, each with a
transfer function f (`). Notice that the transfer function may be dif-
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Section 2: Multilayer Perceptron 4

ferent from layer to layer. As in the extended Delta rule, the transfer
function may be given by any differentiable function, but does not
need to be linear. These neurons receive signals from the neurons in
the preceding layer, `− 1. For example, neuron X

(`)
j receives a signal

from X
(`−1)
i with a weight factor w

(`)
ij . Therefore we have an N`−1

by N` weight matrix, W(`), whose elements are given by w
(`)
ij , for

i = 1, 2, . . . , N`−1 and j = 1, 2, . . . , N`. Neuron X
(`)
j also has a bias

given by b
(`)
j , and its activation is a

(`)
j . To simplify the notation, we

will use n
(`)
j (= yin,j) to denote the net input into neuron X

(`)
j . It is

given by

n
(`)
j =

N`−1∑
i=1

a
(`−1)
i w

(`)
ij + b

(`)
j , j = 1, 2, . . . , N`.

Toc JJ II J I Back J Doc Doc I



Section 2: Multilayer Perceptron 5

Thus the activation of neuron X
(`)
j is

a
(`)
j = f (`)(n(`)

j ) = f (`)(
N`−1∑
i=1

a
(`−1)
i w

(`)
ij + b

(`)
j ).

We can consider the zeroth layer as the input layer. If an input
vector x has N components, then N0 = N and neurons in the input
layer have activations a

(0)
i = xi, i = 1, 2, . . . , N0.

Layer L of the network is the output layer. Assuming that the
output vector y has M components, then we must have NL = M .
These components are given by yj = a

(L)
j , j = 1, 2, . . . ,M .

For any given input vector, the above equations can be used to
find the activation for each neuron for any given set of weights and
biases. In particular the network output vector y can be found. The
remaining question is how to train the network to find a set of weights
and biases in order for it to perform a certain task.
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3. Backpropagation Algorithm

We will now consider training a rather general multilayer perceptron
for pattern association using the BP algorithm. Training is carried
out supervised and so we assume that a set of pattern pairs (or asso-
ciations): s(q) : t(q), q = 1, 2, . . . , Q is given. The training vectors s(q)

have N components,

s(q) =
[

s
(q)
1 s

(q)
2 . . . s

(q)
N

]
,

and their targets t(q) have M components,

t(q) =
[

t
(q)
1 t

(q)
2 . . . t

(q)
M

]
.

Just like in the Delta rule, the training vectors are presented one at
a time to the network during training. Suppose in time step t of the
training process, a training vector s(q) for a particular q is presented
as input, x(t), to the network. The input signal can be propagated
forward through the network using the equations in the last section
and the current set of weights and biases to obtain the corresponding
network output, y(t). The weights and biases are then adjusted using
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Section 3: Backpropagation Algorithm 7

the steepest descent algorithm to minimize the square of the error for
this training vector:

E = ‖y(t)− t(t)‖2,
where t(t) = t(q) is the corresponding target vector for the chosen
training vector s(q).

This square error E is a function of all the weights and biases of
the entire network since y(t) depends on them. We need to find the
set of updating rule for them based on the steepest descent algorithm:

w
(`)
ij (t + 1) = w

(`)
ij (t)− α

∂E

∂w
(`)
ij (t)

b
(`)
j (t + 1) = b

(`)
j (t)− α

∂E

∂b
(`)
j (t)

,

where α(> 0) is the learning rate.
To compute these partial derivatives, we need to understand how

E depends on the weights and biases. First E depends explicitly on
the network output y(t) (the activations of the last layer, a(L)), which
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Section 3: Backpropagation Algorithm 8

then depends on the net input into the L−th layer, n(L). In turn n(L)

is given by the activations of the preceding layer and the weights and
biases of layer L. The explicit relation is: for brevity, the dependence
on step t is omitted

E = ‖y − t(t)‖2 = ‖a(L) − t(t)‖2 = ‖f (L)(n(L))− t(t)‖2

=

∥∥∥∥∥∥f (L)

NL−1∑
i=1

a
(L−1)
i w

(L)
ij + b

(L)
j

− t(t)

∥∥∥∥∥∥
2

.

It is then easy to compute the partial derivatives of E with respect to
the elements of W(L) and b(L) using the chain rule for differentiation.
We have

∂E

∂w
(L)
ij

=
NL∑
n=1

∂E

∂n
(L)
n

∂n
(L)
n

∂w
(L)
ij

.

Notice the sum is needed in the above equation for correct application
of the chain rule. We now define the sensitivity vector for a general
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Section 3: Backpropagation Algorithm 9

layer ` to have components

s(`)
n =

∂E

∂n
(`)
n

n = 1, 2, . . . , N`.

This is called the sensitivity of neuron X
(`)
n because it gives the change

in the output error, E, per unit change in the net input it receives.
For layer L, it is easy to compute the sensitivity vector directly

using the chain rule to obtain

s(L)
n = 2

(
a(L)

n − tn(t)
)

ḟ (L)(n(L)
n ), n = 1, 2, . . . , NL.

where ḟ denotes the derivative of the transfer function f . We also
know that

∂n
(L)
n

∂w
(L)
ij

=
∂

∂w
(L)
ij

NL−1∑
m=1

a(L−1)
m w(L)

mn + b(L)
n

 = δnja
(L−1)
i .

Therefore we have
∂E

∂w
(L)
ij

= a
(L−1)
i s

(L)
j .
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Similarly,

∂E

∂b
(L)
j

=
NL∑
n=1

∂E

∂n
(L)
n

∂n
(L)
n

∂b
(L)
j

,

and since

∂n
(L)
n

∂b
(L)
j

= δnj ,

we have
∂E

∂b
(L)
j

= s
(L)
j .

For a general layer, `, we can write

∂E

∂w
(`)
ij

=
N∑̀

n=1

∂E

∂n
(`)
n

∂n
(`)
n

∂w
(`)
ij

=
N∑̀

n=1

s(`)
n

∂n
(`)
n

∂w
(`)
ij

.

∂E

∂b
(`)
j

=
N∑̀

n=1

∂E

∂n
(`)
n

∂n
(`)
n

∂b
(`)
j

=
N∑̀

n=1

s(`)
n

∂n
(`)
n

∂b
(`)
j

.
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Since

n(`)
n =

N`−1∑
m=1

a(`−1)
m w(`)

mn + b(`)
n , j = 1, 2, . . . , N`,

we have

∂n
(`)
n

∂w
(`)
ij

= δnja
(`−1)
i

∂n
(`)
n

∂b
(`)
j

= δnj ,

and so
∂E

∂w
(`)
ij

= a
(`−1)
i s

(`)
j ,

∂E

∂b
(`)
j

= s
(`)
j .

Therefore the updating rules for the weights and biases are (now we
put back the dependency on the step index t)

w
(`)
ij (t + 1) = w

(`)
ij (t)− α a

(`−1)
i (t) s

(`)
j (t)
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b
(`)
j (t + 1) = b

(`)
j (t)− α s

(`)
j (t),

In order to use these updating rules, we need to be able to compute
the sensitivity vectors s(`) for ` = 1, 2, . . . , L−1. From their definition

s
(`)
j =

∂E

∂n
(`)
j

j = 1, 2, . . . , N`,

we need to know how E depends on n
(`)
j . The key to computing these

partial derivatives is to note that n
(`)
j in turn depends on n

(`−1)
i for

i = 1, 2, . . . , N`−1, because the net input for layer ` depends on the
activation of the previous layer, ` − 1, which in turn depends on the
net input for layer `− 1. Specifically

n
(`)
j =

N`−1∑
i=1

a
(`−1)
i w

(`)
ij + b

(`)
j =

N`−1∑
i=1

f (`−1)(n(`−1)
i )w(`)

ij + b
(`)
j
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for j = 1, 2, . . . , N`. Therefore we have for the sensitivity of layer `−1

s
(`−1)
j =

∂E

∂n
(`−1)
j

=
N∑̀
i=1

∂E

∂n
(`)
i

∂n
(`)
i

∂n
(`−1)
j

=
N∑̀
i=1

s
(`)
i

∂

∂n
(`−1)
j

N`−1∑
m=1

f (`−1)(n(`−1)
m )w(`)

mi + b
(`)
i


=

N∑̀
i=1

s
(`)
i ḟ (`−1)(n(`−1)

j )w(`)
ji = ḟ (`−1)(n(`−1)

j )
N∑̀
i=1

w
(`)
ji s

(`)
i .

Thus the sensitivity of a neuron in layer `−1 depends on the sensitiv-
ities of all the neurons in layer `. This is a recursion relation for the
sensitivities of the network since the sensitivities of the last layer L is
known. To find the activations or the net inputs for any given layer,
we need to feed the input from the left of the network and proceed
forward to the layer in question. However to find the sensitivities for
any given layer, we need to start from the last layer and use the re-
cursion relation going backward to the given layer. This is why the
training algorithm is called backpropagation.
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In summary, the backpropagation algorithm for training a multi-
layer perceptron is
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Section 3: Backpropagation Algorithm 15

1. Set α. Initialize weights and biases.

2. For step t = 1, 2, . . ., repeat steps a-e until convergence.
a Set a(0) = x(t) randomly picked from training set.
b For ` = 1, 2, . . . , L, compute

n(`) = a(`−1)W(`) + b(`) a(`) = f (`)(n(`)).

c Compute for n = 1, 2, . . . , NL

s(L)
n = 2

(
a(L)

n − tn(t)
)

ḟ (L)(n(L)
n ).

d For ` = L− 1, . . . , 2, 1 and j = 1, 2, . . . , N`, compute

s
(`)
j = ḟ (`)(n(`)

j )
N`+1∑
i=1

w
(`+1)
ji s

(`+1)
i .

e For ` = 1, 2, . . . , L, update

w
(`)
ij (t + 1) = w

(`)
ij (t)− α a

(`−1)
i (t) s

(`)
j (t),

b
(`)
j (t + 1) = b

(`)
j (t)− α s

(`)
j (t).
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Section 3: Backpropagation Algorithm 16

To compute the updates for the weights and biases, we need to
find the activations and sensitivities for all the layers. To obtain the
sensitivities, we also need ḟ (`)(n(`)

j ). That means that in general we

need to keep track of all the n
(`)
j as well.

In NNs trained using the backpropagation algorithm, there are two
functions often used as the transfer functions. One is the Log-Sigmoid
function

flogsig(x) =
1

1 + e−x

which is differentiable and its value goes smoothly and monotonically
between 0 and 1 for x around 0. The other is the hyperbolic tangent
Sigmoid function

ftansig(x) =
1− e−x

1 + e−x
= tanh(x/2)

which is also differentiable, but its value goes smoothly between −1
and 1 for x around 0.[2] It is easy to see that the first derivatives of
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Section 4: Variations of the Basic Backpropagation Algorithm 17

these functions are given in terms of the same functions alone:

ḟlogsig(x) = flogsig(x) [1− flogsig(x)]

ḟtansig(x) =
1
2

[1 + ftansig(x)] [1− ftansig(x)]

Since f (`)(n(`)
j ) = a

(`)
j , in implementing the NN on a computer, there

is actually no need to keep track of n
(`)
j at all (and thus saving mem-

ory).

4. Variations of the Basic Backpropagation Algorithm

Because the training process of a multilayer NN using the basic BP
can be rather time consuming (days or even weeks of training time
for many practical problems), a number of variations of the basic BP
algorithm are available to accelerate the convergence.

4.1. Modified Target Values

When the output target vectors are of bipolar form and the transfer
functions for the neurons in the output layer are hyperbolic tangent
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Section 4: Variations of the Basic Backpropagation Algorithm 18

Sigmoid functions, since the required output values of ±1 occur at
the asymptotes of the transfer functions, those values can never be
reached. The inputs into these neurons need to have extremely large
magnitudes. However this happens only when the weights eventu-
ally take on extremely large magnitudes also. Thus the convergence
are typically very slow. The same is true if binary vectors are used
together with the binary Sigmoid function.

One easy way out is to consider the net to have learned a particular
training vector if the computed output values are within a specified
tolerance of some modified desired values. Good modified values for
the hyperbolic tangent Sigmoid function is ±0.8. Use of modified
values too close to 0 may actually prolong the convergence.

4.2. Other Transfer Functions

The arctangent function is sometimes used as transfer function in
BP. It approaches its asymptotic values (saturates) more slowly than
the hyperbolic tangent Sigmoid function. Scaled so that the function
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Section 4: Variations of the Basic Backpropagation Algorithm 19

value varies range between −1 and 1, the function is

farctan(x) =
2
π

arctan(x),

with derivative

ḟarctan(x) =
2
π

1
1 + x2

.

For some applications, where saturation is not especially beneficial,
a non-saturating transfer function may be used. One suitable example
is

flog(x) =

{
log(1 + x) for x ≥ 0
− log(1 + x) for x < 0.

Note that it is continuous everywhere, and its derivative is given by

ḟlog(x) =

{
1

1+x for x > 0
1

1−x for x < 0

and is also continuous everywhere, including x = 0.
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Section 4: Variations of the Basic Backpropagation Algorithm 20

Radial basis functions are also used as transfer functions in BP.
These functions have non-negative responses that are localized around
particular input values. A common example is the Gaussian function,

fgaussian(x) = exp(−x2)

which is localized around x = 0. Its derivative is

ḟgaussian(x) = −2x exp(−x2) = −2xfgaussian(x).

4.3. Momentum

Convergence is sometimes faster if a momentum term is added to the
weight update formulas. In the simplest form of BP with momentum,
the momentum term is proportional to the change in the weights in
the previous step:

∆w
(`)
ij (t + 1) = α a

(`−1)
i (t) s

(`)
j (t) + µ∆w

(`)
ij (t),

where the momentum parameter µ lies in the range (0 1). Therefore
updates of the weights proceed in a combination of the current gra-
dient direction and that of the previous gradient. Momentum allows
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Section 4: Variations of the Basic Backpropagation Algorithm 21

the net to make reasonably large weight adjustments as long as the
corrections are in the same general direction for several successive in-
put patterns. It also prevents a large response to the error from any
one single training pattern.

4.4. Batch Updating

In some cases it is advantageous to accumulate the weight correction
terms for several patterns (or even an entire epoch if there are not too
many patterns) and make a single weight adjustment for each weight
rather than updating the weights after each pattern is presented. This
procedure has a smoothing effect on the correction terms somewhat
similar to the use of momentum.

4.5. Variable Learning Rates

Just like the original Delta rule for a single layer NN, the use of
variable learning rates may accelerate the convergence. Each weight
may even have its own learning rate. The learning rates may vary
adaptively with time as training progress.
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4.6. Adaptive Slope

An adjustable parameter can be introduced into the transfer func-
tion to control the slope of the function. For example instead of the
hyperbolic tangent Sigmoid function

ftansig(x) =
1− e−x

1 + e−x
= tanh(x/2)

we can use the hyperbolic tangent Sigmoid function

ftansig(x) =
1− e−σx

1 + e−σx
= tanh(σx/2),

where σ(> 0) controls the magnitude of the slope. The larger σ is,
the larger is the derivative of the transfer function. Each neuron can
have its own transfer function with a different slope parameter.

Updating formulas for the weights, biases, and slope parameters
can be derived. Although the net input into neuron X

(`)
j is still given
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Section 4: Variations of the Basic Backpropagation Algorithm 23

by

n
(`)
j =

N`−1∑
i=1

a
(`−1)
i w

(`)
ij + b

(`)
j , j = 1, 2, . . . , N`,

its activation is now given by

a
(`)
j = f (`)(σ(`)

j n
(`)
j ) = f (`)

σ
(`)
j

N`−1∑
i=1

a
(`−1)
i w

(`)
ij + b

(`)
j

 ,

where σ
(`)
j is the slope parameter for neuron X

(`)
j .

The sensitivities for neurons in the output layer are given by

s(L)
n = 2

(
a(L)

n − tn(t)
)

ḟ (L)(σ(L)
n n(L)

n ), n = 1, 2, . . . , NL.

The sensitivities of all the other layers can then be obtained from the
following recursion relation

s
(`−1)
j = ḟ (`−1)(n(`−1)

j )
N∑̀
i=1

w
(`)
ji s

(`)
i σ

(`)
i .
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Section 5: Multilayer NN as Universal Approximations 24

The updating rules for the weights, biases, and slope parameters
are given by

∆w
(`)
ij (t) = −α a

(`−1)
i (t) s

(`)
j (t) σ

(`)
j (t)

∆b
(`)
j (t) = −α s

(`)
j (t) σ

(`)
j (t),

∆σ
(`)
j (t) = −α

∂E

∂σ
(`)
j (t)

= α s
(`)
j (t) n

(`)
j (t).

The slope parameters are typically initialized to 1 unless one has
some ideas of what their proper values are supposed to be. The use
of adjustable slopes usually improves the convergence, however at the
expense of slightly more complicated computation per step.

5. Multilayer NN as Universal Approximations

One use of a NN is to approximate a continuous mapping. It can be
shown that a feedforward NN with an input layer, a hidden layer, and
an output layer can represent any continuous function exactly. This
is known as the Kolmogorov mapping NN existence theorem.
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Section 5: Multilayer NN as Universal Approximations 25

With the use of appropriate transfer functions and a sufficiently
large number of hidden layers, a NN can approximate both a function
and its derivative. This is useful for applications such as a robot
learning smooth movements.
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g(x) = γflogsig(x) + η

which is related to flogsig via a linear transformation. Since we
want g = a when flogsig = −1, therefore we have −γ + η = a. Also
we want g = b when flogsig = 1 , therefore we have γ + η = b.
Solving for a and b gives

η =
a + b

2
, γ =

b− a

2
.
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Therefore

g(x) =
1
2

((b− a)flogsig(x) + a + b) .

16
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