
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

ADALINE for Pattern
Classification

K. Ming Leung

Abstract: A supervised learning algorithm known as
the Widrow-Hoff rule, or the Delta rule, or the LMS
rule, is introduced to train neuron networks to classify
patterns into two or more categories.

Directory
• Table of Contents
• Begin Article

Copyright c© 2008 mleung@poly.edu
Last Revision Date: February 26, 2008

mailto:mleung@poly.edu

Table of Contents

1. Simple ADELINE for Pattern Classification
1.1. Multi-Parameter Minimization

2. Delta Rule

3. Exact Optimal Choice of Weights and Bias

4. Application: Bipolar Logic Function: AND

5. NN with multiple Output Neurons

6. An Example

Section 1: Simple ADELINE for Pattern Classification 3

1. Simple ADELINE for Pattern Classification

Although the Perceptron learning rule always converges, in fact in a
finite number of steps, to a set of weights and biases, provided that
such a set exists, the set obtained is often not the best in terms of
robustness. We will discuss here the ADALINE, which stands for
Adaptive Linear Neuron, and a learning rule which is capable, at
least in principle, of finding such a robust set of weights and biases.

The architecture for the NN for the ADALINE is basically the
same as the Perceptron, and similarly the ADALINE is capable of
performing pattern classifications into two or more categories. Bipolar
neurons are also used. The ADALINE differs from the Perceptron in
the way the NNs are trained, and in the form of the transfer function
used for the output neurons during training. For the ADALINE, the
transfer function is taken to be the identity function during training.
However, after training, the transfer function is taken to be the bipolar
Heaviside step function when the NN is used to classify any input
patterns. Thus the transfer function is

f(yin) = yin, during training,

Toc JJ II J I Back J Doc Doc I

Section 1: Simple ADELINE for Pattern Classification 4

f(yin) =

{
+1, if yin ≥ 0
−1, if yin < 0

after training.

We will first consider the case of classification into 2 categories
only, and thus the NN has only a single output neuron. Extension to
the case of multiple categories is treated in the next section.

The total input received by the output neuron is given by

yin = b+
N∑

i=1

xiwi.

Just like Hebb’s rule and the Perceptron learning rule, the Delta
rule is also a supervised learning rule. Thus we assume that we are
given a training set:

{s(q), t(q)}, q = 1, 2, . . . , Q.

where s(q) is a training vector, and t(q) is its corresponding targeted
output value.

Also like Hebb’s rule and the Perceptron rule, one cycles through
the training set, presenting the training vectors one at a time to the

Toc JJ II J I Back J Doc Doc I

Section 1: Simple ADELINE for Pattern Classification 5

NN. For the Delta rule, the weights and bias are updated so as to
minimize the square of the difference between the net output and the
target value for the particular training vector presented at that step.

Notice that this procedure is not exactly the same as minimizing
the overall error between the NN outputs and their corresponding
target values for all the training vectors. Doing so would require the
solution to a large scale optimization problem involving N weight
components and 1 bias.

1.1. Multi-Parameter Minimization

To better understand the updating procedure for the weights and bias
in the Delta rule, we need to digress and consider the topic of multi-
parameter minimization. We assume that E(w) is a scalar function
of a vector argument, w. We want to find the point w ∈ Rn at which
E takes on its minimum value.

Suppose we want to find the minimum value iteratively starting
with w(0). The iteration amounts to

w(k + 1) = w(k) + ∆w(k), k = 0, 1,

Toc JJ II J I Back J Doc Doc I

Section 1: Simple ADELINE for Pattern Classification 6

The question is how should the changes in the weight vector be chosen
in order that we end up with a lower value for E:

E(w(k + 1)) < E(w(k)).

For sufficiently small ∆w(k), we obtain from Taylor’s theorem

E(w(k + 1)) = E(w(k) + ∆w(k)) ≈ E(w(k)) + g(k) ·∆w(k),

where g(k) = ∇E(w)|w=w(k) is the gradient of E(w) at w(k). It
is clear that E(w(k + 1)) < E(w(k)) if g(k) · ∆w(k) < 0. The
largest decrease in the value of E(w) occurs in the direction ∆w(k) =
−αg(k), if α is sufficiently small and positive. This direction is called
the steepest descent direction, and α controls the size of the step
and is called the learning rate. Thus starting from w(0)), the idea is to
find a minimum of the function E(w) iteratively by making successive
steps along the local gradient direction, according to

w(k + 1) = w(k)− αg(k), k = 0, 1,

This method of finding the minimum is known as the steepest descent
method.

Toc JJ II J I Back J Doc Doc I

Section 2: Delta Rule 7

This is a greedy method which may lead to convergence to a local
but not a global minimum of E.

2. Delta Rule

Suppose at the k-th step in the training process, the current weight
vector and bias are given by w(k) and b(k), respectively, and the q-th
training vectors, s(k) = s(q), is presented to the NN. The total input
received by the output neuron is

yin = b(k) +
N∑

i=1

si(k)wi(k).

Since the transfer function is given by the identity function during
training, the output of the NN is

y(k) = yin = b(k) +
N∑

i=1

si(k)wi(k).

However the target output is t(k) = t(q), and so if y(k) 6= t(k) then
there is an error given by y(k) − t(k). This error can be positive or

Toc JJ II J I Back J Doc Doc I

Section 2: Delta Rule 8

negative. The Delta rule aims at finding the weights and bias so as
to minimize the square of this error

E(w(k)) = (y(k)− t(k))2 =

(
b(k) +

N∑
i=1

si(k)wi(k)− t(k)

)2

.

We can absorb the bias term by introducing an extra input neuron,
X0, so that its activation (signal) is always fixed at 1 and its weight
is the bias. Then the square of the error in the k-th step is

E(w(k)) =

(
N∑

i=0

si(k)wi(k)− t(k)

)2

.

The gradient of this function, g(k), in a space of dimension N + 1 (N
weights and 1 bias) is

gj(k) = ∂wj(k)E(w(k)) = 2

(
N∑

i=0

si(k)wi(k)− t(k)

)
sj(k).

Toc JJ II J I Back J Doc Doc I

Section 2: Delta Rule 9

Using the steepest descent method, we have

w(k + 1) = w(k)− 2α

(
N∑

i=0

si(k)wi(k)− t(k)

)
s(k).

The i = 1, 2, . . . , N components of this equation gives the updating
rule for the weights. The zeroth component of this equation gives the
updating rule for the bias

b(k + 1) = b(k)− 2α

(
N∑

i=0

si(k)wi(k)− t(k)

)
.

Notice that in the textbook by Fausett, the factors of 2 are missing
from these two updating formulas. We can also say that the learning
rate there is twice the value here.

We will now summarize the Delta rule. To save space, we use
vector notation, where vectors are denoted by boldface quantities.

Toc JJ II J I Back J Doc Doc I

Section 2: Delta Rule 10

The Delta rule is:
1. Set learning rate α and initialize weights and bias.

2. Repeat the following steps, while cycling through
the training set q = 1, 2, . . . , Q, until changes in the
weights and bias are insignificant.
(a) Set activations for input vector x = s(q).
(b) Compute total input for the output neuron:

yin = x ·w + b

(c) Set y = yin.
(d) Update the weights and bias

wnew = wold − 2α(y − t(q))x,

bnew = bold − 2α(y − t(q)).

Notice that for the Delta rule, unlike the Perceptron rule, training
does not stop even after all the training vectors have been correctly
classified. The algorithm continuously attempts to produce more ro-

Toc JJ II J I Back J Doc Doc I

Section 2: Delta Rule 11

bust sets of weights and bias. Iteration is stopped only when changes
in the weights and bias are smaller than a preset tolerance level.

In general, there is no proof that the Delta rule will always lead
to convergence, or to a set of weights and bias that enable the NN to
correctly classify all the training vectors. One also needs to experi-
ment with the size of the learning rate. Too small a value may require
too many iterations. Too large a value may lead to non-convergence.

Also because the identity function is used as the transfer function
during training, the error at each step of the training process may
never become small, even though an acceptable set of weights and
bias may have already been found. In that case the weights will
continually change from one iteration to the next. The amount of
changes are of course proportional to α.

Therefore in some cases, one may want to gradually decrease α
towards zero during iteration, especially when one is close to obtaining
the best set of weights and bias. Of course there are many ways in
which α can be made to approach zero.

Toc JJ II J I Back J Doc Doc I

Section 3: Exact Optimal Choice of Weights and Bias 12

3. Exact Optimal Choice of Weights and Bias

Actually one can find, at least in principle, a set of weights and bias
that will perform best for a given training set. To see this, it is better
to absorb the bias to simplify the expressions. What this problem
intends to accomplish mathematically is to find a vector w that min-
imizes the overall squares of the errors (the least mean squares, or
LMS)

F (w) =
1
Q

Q∑
q=1

(y − t(q))2 =
1
Q

Q∑
q=1

(
N∑

i=0

s
(q)
i wi − t(q)

)2

.

Since F (w) is quadratic in the weight components, the solution can be
readily obtained, at least formally. To obtain the solution, we take the
partial derivatives of F (w), set them to zero, and solve the resulting
set of equations. Since F (w) is quadratic in the weight components,
its partial derivatives are linear, and the resulting equation for the
weight components are linear and can therefore be solved.

Taking the partial derivative of F (w) with respect to the j-th

Toc JJ II J I Back J Doc Doc I

Section 3: Exact Optimal Choice of Weights and Bias 13

component of the weight vector gives

∂wj
F (w) =

2
Q

Q∑
q=1

(y − t(q))∂wj

N∑
i=0

s
(q)
i wi =

2
Q

Q∑
q=1

(y − t(q))s(q)j

=
2
Q

Q∑
q=1

(
N∑

i=0

s
(q)
i wi − t(q)

)
s
(q)
j = 2

(
N∑

i=0

wiCij − vj

)
,

where we have defined the correlation matrix C such that

Cij =
1
Q

Q∑
q=1

s
(q)
i s

(q)
j

and a vector v having components

vj =
1
Q

Q∑
q=1

t(q)s
(q)
j .

Setting the partial derivatives to zero gives the set of linear equations
(written in matrix notation):

wC = v.
Toc JJ II J I Back J Doc Doc I

Section 4: Application: Bipolar Logic Function: AND 14

Notice that the correlation matrix C and the vector v can be easily
computed from the given training set.

Assuming that the correlation matrix is nonsingular, the solution
is therefore given by

w = vC−1,

where C−1 is the inverse matrix for C. Notice that the correlation
matrix is symmetric and has dimension (N + 1)× (N + 1).

Although the exact solution is formally available, computing it this
way requires the computation of the inverse of matrix C or solving
a system of linear equations. The computational complexity involved
is of O(N + 1)3. For most practical problems, N is so large that
computing the solution this way is really not feasible.

4. Application: Bipolar Logic Function: AND

We use the Delta rule here to train the same NN (the bipolar logic
function: AND) that we have treated before using different training
rules. The training set is given by the following table:

Toc JJ II J I Back J Doc Doc I

Section 4: Application: Bipolar Logic Function: AND 15

q s(q) t(q)

1 [1 1] 1
2 [1 -1] -1
3 [-1 1] -1
4 [-1 -1] -1

We assume that the weights and bias are initially zero, and apply
the Delta rule to train the NN. We find that for a learning rate α larger
than about 0.3, there is no convergence as the weight components
increase without bound. For α less than 0.3 but larger than 0.16,
the weights converge but to values that fail to correctly classify all
the training vectors. The weights converge to values that correctly
classify all the training vectors if α is less than about 0.16. They
become closer and closer to the most robust set of weights and bias
when α is below 0.05.

We also consider here the exact formal solution given in the last
section. We will absorb the bias by appending a 1 in the leading
position of each of the training vectors so that the training set is

Toc JJ II J I Back J Doc Doc I

Section 4: Application: Bipolar Logic Function: AND 16

q s(q) t(q)

1 [1 1 1] 1
2 [1 1 -1] -1
3 [1 -1 1] -1
4 [1 -1 -1] -1

Toc JJ II J I Back J Doc Doc I

Section 4: Application: Bipolar Logic Function: AND 17

We first compute the correlation matrix

C =
1
4

4∑
q=1

s(q)T s(q)

=
1
4

( 1
1
1

 [1 1 1
]

+

 1
1
−1

 [1 1 −1
]

+

 1
−1

1

 [1 −1 1
]

+

 1
−1
−1

 [1 −1 −1
])

=

 1 0 0
0 1 0
0 0 1


Since C is an identity matrix (the training vectors are as independent
of each other as they can be), its inverse is just itself. Then we

Toc JJ II J I Back J Doc Doc I

Section 4: Application: Bipolar Logic Function: AND 18

compute the vector v

v =
1
4

4∑
q=1

t(q)s(q)

=
1
4

([
1 1 1

]
−
[

1 1 −1
]

−
[

1 −1 1
]
−
[

1 −1 −1
])

=
[
− 1

2
1
2

1
2

]
.

Therefore we have

W = vC−1 =
[
− 1

2
1
2

1
2

]
.

This means that

b = −1
2
, W

[
1
2

1
2

]
,

and so the best decision is boundary is given by the line

x2 = 1− x1,

which we know before is the correct result.
Toc JJ II J I Back J Doc Doc I

Section 5: NN with multiple Output Neurons 19

5. NN with multiple Output Neurons

We now extend our discussions here to NN with multiple output neu-
rons, and thus are capable of clustering input vectors into more than
2 classes. As before, we need to have M neurons in the output layer.

We will absorb the biases as we did before with the Perceptron.
Suppose at the k-th step in the training process, the current weight
matrix and bias vector are given by W(k) and b(k), respectively, and
one of the training vectors s(k) = s(q), for some integer q between 1
and Q, is presented to the NN. The output of neuron Yj is

yj(k) = yin,j =
N∑

i=0

si(k)wij(k).

However the target is tj(k) = t
(q)
j , and so the error is yj(k) − tj(k).

Thus we want to find a set of wmn that minimizes the quantity

E(W(k)) =
M∑

j=1

(yj(k)− tj(k))2 =

(
N∑

i=0

si(k)wij(k)− tj(k)

)2

.

Toc JJ II J I Back J Doc Doc I

Section 5: NN with multiple Output Neurons 20

X1

X2

Xn

Y1

Y2

Ym

x1

x2

xn

y1

y2

ym

w11

w12

w13

w21

w22

w23

w31
w32

w33

Figure 1: A neural network for multi-category classification.

Toc JJ II J I Back J Doc Doc I

Section 5: NN with multiple Output Neurons 21

We take the gradient of this function with respect to wmn

∂wmn
E(W(k)) = ∂wmn

M∑
j=1

(yj(k)− tj(k))2

= 2
M∑

j=1

(yj(k)− tj(k)) ∂wmn
yj .

∂wmnyj = ∂wmn

N∑
i=0

si(k)wij(k) =
N∑

i=0

si(k)∂wmnwij(k)

Since

∂wmnwij(k) = δi,mδj,n,

thus

∂wmn
yj = ∂wmn

N∑
i=0

si(k)wij(k) =
N∑

i=0

si(k)δi,mδj,n = δj,nsm(k),

Toc JJ II J I Back J Doc Doc I

Section 5: NN with multiple Output Neurons 22

and so we have

∂wmnE(W(k)) = 2
M∑

j=1

(yj(k)− tj(k)) δj,nsm(k)

= 2sm(k) (yn(k)− tn(k)) .
Using the steepest descent method, we have

wij(k + 1) = wij(k)− 2αsi(k) (yj(k)− tj(k)) .

The i = 1, 2, . . . , N components of this equation gives the updating
rule for the weights. The i = 0 component of this equation gives the
updating rule for the bias

bj(k + 1) = bj(k)− 2α (yj(k)− tj(k)) .

Toc JJ II J I Back J Doc Doc I

Section 5: NN with multiple Output Neurons 23

The general multiple output neuron Delta rule is:
1. Set learning rate α and initialize weights and bias.

2. Repeat the following steps, while cycling through
the training set q = 1, 2, . . . , Q, until changes in the
weights and biases are within tolerance.
(a) Set activations for input vector x = s(q).
(b) Compute total input for the output neuron:

yin = x ·W + b

(c) Set y = yin.
(d) Update the weights and biases

Wnew = Wold − 2αxT (y − t(q)),

bnew = bold − 2α(y − t(q)).

Toc JJ II J I Back J Doc Doc I

Section 6: An Example 24

6. An Example

We will now treat the same example that we have considered before for
the Perceptron with multiple output neurons. We use bipolar output
neurons and the training set:
(class 1)

s(1) =
[

1 1
]
, s(2) =

[
1 2

]
with t(1) = t(2) =

[
−1 −1

]
(class 2)

s(3) =
[

2 −1
]
, s(4) =

[
2 0

]
with t(3) = t(4) =

[
−1 1

]
(class 3)

s(5) =
[
−1 2

]
, s(6) =

[
−2 1

]
with t(5) = t(6) =

[
1 −1

]
(class 4)

s(7) =
[
−1 −1

]
, s(8) =

[
−2 −2

]
with t(7) = t(8) =

[
1 1

]
It is clear that N = 2, Q = 8, and the number of classes is 4. The
number of output neuron is chosen to be M = 2 so that 2M = 4
classes can be represented.

Toc JJ II J I Back J Doc Doc I

Section 6: An Example 25

Our exact calculation of the weights and bias for the case of a single
output neuron can be extended to the case of multiple output neurons.
One can then obtain the following exact results for the weights and
biases:

W =

[−91
153

1
6

−8
153

−2
3

]
b =

[
2

153
1
6

]
Using these exact results, we can easily see how good or bad our
iterative solutions are.

It should be remarked that the most robust set of weights and
biases is determined only by a few training vectors that lie very close
to the decision boundaries. However in the Delta rule, all training
vectors contribute in some way. Therefore the set of weights and
biases obtained by the Delta rule is not necessarily always the most
robust.

The Delta rule usually gives convergent results if the learning rate
is not too large. The resulting set of weights and biases typically leads

Toc JJ II J I Back J Doc Doc I

Section 6: An Example 26

to correct classification of all the training vectors, provided such a set
exist. How close this set is to the best choice depends on the starting
weights and biases, the learning rate and the number of iterations. We
find that for this example much better convergence can be obtained
if the learning rate at step k is set to be α = 1/k.

Toc JJ II J I Back J Doc Doc I

Section 6: An Example 27

References

[1] See Chapter 2 in Laurene Fausett, ”Fundamentals of Neural Net-
works - Architectures, Algorithms, and Applications”, Prentice
Hall, 1994.

Toc JJ II J I Back J Doc Doc I

	Table of Contents
	1 Simple ADELINE for Pattern Classification
	1.1 Multi-Parameter Minimization

	2 Delta Rule
	3 Exact Optimal Choice of Weights and Bias
	4 Application: Bipolar Logic Function: AND
	5 NN with multiple Output Neurons
	6 An Example

