
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Fixed Weight Competitive Nets:
Hamming Net

K. Ming Leung

Abstract: A fixed weight competitive net known as the
Hamming net is discussed.

Directory
• Table of Contents
• Begin Article

Copyright c© 2007 mleung@poly.edu
Last Revision Date: April 10, 2007

mailto:mleung@poly.edu

Table of Contents

1. Introduction

2. MAXNET
2.1. Example: MAXNET
2.2. Best Choice of ε

3. Mexican Hat Network

4. Hamming Net
4.1. Example: Hamming Net

Section 1: Introduction 3

1. Introduction

When a net is trained to classify the input signal into one of the output
categories, A, B, C, D, E, J, or K, the net sometimes responded that
the signal was both a C and a K, or both an E and a K, or both a
J and a K, due to similarities in these character pairs. In this case
it will be better to include additional structure in the net to force it
to make a definitive decision. The mechanism by which this can be
accomplished is called competition.

The most extreme form of competition among a group of neurons
is called Winner-Take-All, where only one neuron (the winner) in
the group will have a nonzero output signal when the competition
is completed. An example of that is the MAXNET. A more general
form of competition useful for contrast enhancement is known as the
Mexican Hat. A simple clustering net known as the Hamming net is
discussed here. It is based on the use of fixed exemplar vectors and
the MAXNET subnet.

Toc JJ II J I Back J Doc Doc I

Section 2: MAXNET 4

2. MAXNET

MAXNET is a neural net based on competition that can be used as
a subnet to choose the neuron whose activation is the largest. If a
fully neural implementation is not required, one can certainly use any
of a multitude of algorithms that find the maximum value of a set of
numbers.

The MAXNET has M neurons that are fully interconnected, each
neuron is connected to every other neuron in the net, including it-
self. The transfer function used by the neurons is the positive-linear
function

fposlin(x) =

{
x, if x > 0
0, if x ≤ 0.

There is no training for the MAXNET. The weights are symmetrical,
fixed and are given by

wij =

{
1, if i = j

−ε, if i 6= j,

Toc JJ II J I Back J Doc Doc I

Section 2: MAXNET 5

where, according to our textbook,

0 < ε <
1
M

is a predetermined positive constant. It has to be positive and smaller
than 1. The value of its upper bound will be determined later. From
the diagonal terms in the weight matrix, we see that each neuron is
connected to itself with a positive weight of 1. This represents self-
promotion in a competitive environment. The off-diagonal terms, −ε,
is negative and thus represent inhibition. These terms represent the
suppression of the signals of all the other neurons. Self-promoting ones
own achievements while suppressing those of ones peers are commonly
found in highly competitive sociological environments since every one
wants to be a winner. Notice that since ε < 1, self-promotion is more
important than suppressing the signals of other neurons.

The activation of the neurons are specified by aj , j = 1, . . . ,M ,
and they must all be non-negative for the MAXNET to work. The
MAXNET algorithm is:

Toc JJ II J I Back J Doc Doc I

Section 2: MAXNET 6

1 Choose an ε for the weight matrix (but no need to set
it up), and initialize the activations aj(0), j = 1, . . . ,M
(to non-negative values).

2 For k = 1, 2, . . . repeat steps a - c while stopping condi-
tion is not met.
a For each neuron i = 1, . . . ,M , compute the net signal

it receives for the next step

ain,i(k) = ai(k − 1)− ε
∑
j 6=i

aj(k − 1).

b Update the activations for i = 1, . . . ,M

ai(k) = fposlin(ain,i(k)).

c Test stopping condition: Stop only when only one
activation is nonzero.

We assume here that in the real world, only one neuron, not two
or more neurons, can have the same maximal activation, otherwise

Toc JJ II J I Back J Doc Doc I

Section 2: MAXNET 7

special precautions must be exercised to handle the situation.
Since the activations are all non-negative, it is clear that for all i

ain,i(k) ≤ ai(k−1), and so as MAXNET iterates, activations of all the
neurons decrease. However, the smaller their activations are, the more
they decrease fractionally. (The scheme hurts the poor more than the
rich.) As the net iterates, neurons with the smallest values of ain,i(k)
are driven to negative first. Their transfer functions then yield zero
values for their activations. Once the activation is driven to zero, it
is clear that it will remain at zero with subsequent iterations. Until
eventually the activities of all the neurons except one, the winner, are
driven to zero. The activation for the winner then ceases to decrease
any further.

Given a group of neurons, the MAXNET is often used in compet-
itive nets as a subnet to find the one that has the largest activation.
With suitable modifications, it can also be used to determine the min-
imum of a set of given quantities. The operation of such a subnet is
often encapsulated as a vector-valued function

y = compet(x),

Toc JJ II J I Back J Doc Doc I

Section 2: MAXNET 8

where x is the input and y is the corresponding output of the subnet.
There should only be one positive element in y, all other element must
be identically zero.

2.1. Example: MAXNET

The following example shows how the action of the MAXNET for the
case of M = 4 neurons with initial activations a1(0) = 0.6, a2(0) =
0.2, a3(0) = 0.8, a4(0) = 0.4. We choose ε = 0.2. Since 1/M = 0.25,
the chosen value for ε is within the required range.

step k a1(k) a2(k) a3(k) a4(k)
0 0.6 0.2 0.8 0.4
1 0.32 0 0.56 0.08
2 0.192 0 0.48 0
3 0.096 0 0.442 0
4 0.008 0 0.422 0
5 0 0 0.421 0

In increasing order of their activations, the neurons are a2, a4, a1,

Toc JJ II J I Back J Doc Doc I

Section 2: MAXNET 9

and a3. In the first step, their activation decrease fractionally by 1,
0.8, 0.47, and 0.3, respectively. The scheme hurts the poor much more
so than for the rich. They are driven to zero also in this order until
only one winner survives.

The larger the value of ε is, the faster the activations of the losing
neurons are driven to zero. For example, if we choose ε = 0.3, then
we obtain the following results.

step k a1(k) a2(k) a3(k) a4(k)
0 0.6 0.2 0.8 0.4
1 0.18 0 0.44 0
2 0.048 0 0.386 0
3 0 0 0.372 0

The winner emerges only after three iterations. If ε is in [3/7 2/3),
then only one iteration is needed to obtain a winner. For ε ≥ 2/3, no
winner can be found since all the activations are driven to zero in one
single step. Clearly the question is how large a value can one use for
ε for fast convergence?

Toc JJ II J I Back J Doc Doc I

Section 2: MAXNET 10

2.2. Best Choice of ε

We want to determine a good choice of ε for fast convergence.[2] Ac-
cording to our textbook

0 < ε <
1
M

.

We want to see if this is true, and how the upper bound for the value
of ε comes about.

The fastest convergence can be achieved if one can choose an ε
such that the activations of all neurons except the winning one are
driven to zero in one iteration. Since the signal receives by a given
neuron, say i, in step k is

ain,i(k) = ai(k − 1)− ε
∑
j 6=i

aj(k − 1),

and if we knew that neuron ` has the largest activation, then by choos-
ing ε to be slightly less than

εmax =
a`∑M

j 6=` aj

=
1∑M

j 6=`
aj

a`

Toc JJ II J I Back J Doc Doc I

Section 2: MAXNET 11

then in a single iteration, ain,`(k) becomes only slightly larger than
zero and therefore so is a`. This means that all the other ain,i(k) be-
comes negative, and so ai becomes zero because of the transfer func-
tion. Of course we do not know which of the neurons has the largest
activation, finding that is in fact the problem we are confronted with.
So we cannot possibly know how large εmax is. We will replace that by
a smaller number. As a result we will need to iterate MAXNET a few
times before convergence. This smaller number is obtained from the
above expression by replacing the denominator with a larger number.
Notice that aj

a`
≤ 1, and if we replace that by 1, the denominator

become M − 1. Thus we want to choose

ε =
1

M − 1
.

This value is larger than the one suggested in our textbook, and leads
to a slightly faster convergence especially when M is not too large[2].

Toc JJ II J I Back J Doc Doc I

Section 3: Mexican Hat Network 12

3. Mexican Hat Network

Mexican Hat Network is good for the purpose of contrast enhance-
ment. Some common topological arrangements of the neurons include
linear and two-dimensional geometries. Parameter R1 specifies the ra-
dius of the region with positive reinforcement. Parameter R2 (> R1)
specifies the radius of the region of interconnections. The weights are
determined by

wk =

{
c1 > 0, for |k| ≤ R1

c2 < 0, for R1 < |k| ≤ R2.

The transfer function used here is defined by

fsatlin(x) =

0, if x < 0
x, if 0 ≤ x ≤ xmax

xmax, if x ≥ xmax

which can also be expressed as

fsatlin(x) = min(xmax,max(0, x)) = max(0,min(xmax, x)).

Toc JJ II J I Back J Doc Doc I

Section 3: Mexican Hat Network 13

where xmax is fixed positive quantity.
The Mexican Hat net has parameters, R1, R2, c1, c2, xmax and

the maximum number of iteration, tmax. These are all model specific
and must be set at the outset.

The algorithm is:

Toc JJ II J I Back J Doc Doc I

Section 3: Mexican Hat Network 14

1 Set parameters, R1, R2, c1, c2, xmax and tmax. Set the
weights

wk =

{
c1 > 0, for |k| ≤ R1

c2 < 0, for R1 < |k| ≤ R2.

2 Let x(0) = s.

3 For t = 1, . . . , tmax repeat steps a - b.
a For each neuron i = 1, . . . , N , compute the net input

xin,i(t) = c1

R1∑
k=−R1

xi+k(t− 1) + c2

−R1−1∑
k=−R2

xi+k(t− 1)

+c2

R2∑
k=R1+1

xi+k(t− 1)

b Apply the transfer function for i = 1, . . . , N

xi(t) = fsatlin(xin,i(t)).

Toc JJ II J I Back J Doc Doc I

Section 4: Hamming Net 15

4. Hamming Net

For the Hamming net, M exemplar bipolar vectors e(1), e(2) , . . ., e(M)

are given. They are used to form the weight matrix of the network.
The Hamming net is therefore a fixed-weight net. For any given input
vector x, the Hamming net finds the exemplar vector that is closest to
x. Therefore if a collection of input vectors are given, the Hamming
net can be used to cluster these vectors into M different groups.

We need to define what we mean by saying that two vectors a and b
are close to each other. Again we will be working with bipolar vectors
and denote the Hamming distance between the vectors (defined to
be the number of corresponding bits that are different between the
vectors) by H(a,b), and the number of corresponding bits that agrees
with each other by A(a,b).

It is clear that for bipolar vectors

a · b = A(a,b)−H(a,b),

because the corresponding bits are either the same, and so they con-
tribute 1 to the dot-product, or they are different and so contribute
−1 to the dot-product. A corresponding pair of bits must either agree

Toc JJ II J I Back J Doc Doc I

Section 4: Hamming Net 16

or disagree, and so

N = A(a,b) + H(a,b).

We eliminate the Hamming between these two equations and solve for
A(a,b) to get

A(a,b) = a · b
2

+
N

2
.

The two vectors a and b are close to each other if A(a,b) is large.
We will use A(a,b) to measure the closeness of two vectors in the

Hamming net. The closest two vectors are to each other the larger
is A(a,b). We need to work with positive quantities that are large
when two vectors are close to each other because MAXNET will be
used as a subnet to find the one exemplar vector that is closest to the
given input vector. Therefore we can only work with A(a,b) rather
than a · b or H(a,b).

We want to identify a with an input vector x (assumed to be a row
vector of length N), and b with one of the exemplar vectors. With
M exemplar vectors, they can be scaled down by a half and stored

Toc JJ II J I Back J Doc Doc I

Section 4: Hamming Net 17

column-wise to form the weight matrix for the Hamming net. Thus
the weight matrix is N ×M , and its elements are

wij =
1
2
e
(j)
i , i = 1, . . . , N, and j = 1, . . . ,M.

The bias vector is a row vector of length M and has elements N/2:

bj =
1
2
N, j = 1, . . . ,M.

For a given input vector x, the number of bits of agreement that
it has with each of the exemplar vector form a vector

yin = xW + b,

of inputs to the neurons at the Y-layer. These neurons have iden-
tity transfer functions and send the signals that they received to a
MAXNET to find the one with the largest agreement.

The algorithm of the Hamming net is:

Toc JJ II J I Back J Doc Doc I

Section 4: Hamming Net 18

1 Set the weights and biases

wij =
1
2
e
(j)
i , i = 1, . . . , N, and j = 1, . . . ,M,

bj =
1
2
N, j = 1, . . . ,M.

2 For a given input vector x, repeat steps a - c.
a Compute the input to each unit j = 1, . . . ,M

yin,j =
N∑

i=1

xiwij + bj .

b Initialize the activations for MAXNET

yj(0) = yin,j , for j = 1, . . . ,M.

c MAXNET finds the best match exemplar vector for the
given input vector.

Toc JJ II J I Back J Doc Doc I

Section 4: Hamming Net 19

4.1. Example: Hamming Net

We consider here an example of a Hamming net that has the following
two exemplar vectors:

e(1) =
[

1 −1 −1 −1
]
, e(2) =

[
−1 −1 −1 1

]
.

Notice that these two exemplar vector are orthogonal to each other.
We are given the following four vectors

x(1) =
[

1 1 −1 −1
]
, x(2) =

[
1 −1 −1 −1

]
.

x(3) =
[
−1 −1 −1 1

]
, x(4) =

[
−1 −1 1 1

]
.

We will use the Hamming net to cluster them into two groups, one
group for each of the exemplar vectors. Thus for each of the input
vectors we need to find the exemplar vector that is closest to it.

Toc JJ II J I Back J Doc Doc I

Section 4: Hamming Net 20

First we set up the weights and biases:

W =

1
2 − 1

2

− 1
2 − 1

2

− 1
2 − 1

2

− 1
2

1
2

 , b =
[

2 2
]
.

For x(1), we find that

yin = x(1)W + b =
[

3 1
]
.

With this as input to MAXNET, one finds that the exemplar vec-
tor that is the closest to input x(1) is e(1). This makes sense since
A(x, e(1)) = 3 and A(x, e(2)) = 1. We repeat the procedure for x(2),
x(3) and x(4), and find that x(1) and x(2) are closest to e(1), and
x(3) and x(4) are closest to e(2). Thus these four input vectors are
separated into two separate clusters.

Toc JJ II J I Back J Doc Doc I

Section 4: Hamming Net 21

References

[1] See Chapter 4 in Laurene Fausett, ”Fundamentals of Neural Net-
works - Architectures, Algorithms, and Applications”, Prentice
Hall, 1994.

[2] For a faster converging MAXNET, see for example, J.-C. Yen
and S. Chang, ”Improved Winner-Take-All Neural Network”,
Electronics Letters, Vol.28, No.7 662-664, 1992..

10, 11

Toc JJ II J I Back J Doc Doc I

	Table of Contents
	1 Introduction
	2 MAXNET
	2.1 Example: MAXNET
	2.2 Best Choice of

	3 Mexican Hat Network
	4 Hamming Net
	4.1 Example: Hamming Net

