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Section 1: Discrete Hopfield Net 3

1. Discrete Hopfield Net

There are a few different variations and extensions of the discrete
Hopfield net. We will discuss the following version of it for pattern
autoassociation.

1. A set of patterns s(q), q = 1, . . . , Q is assumed to be given for
storage.

2. The net is fully connected in the sense that each neuron is con-
nected to every other neuron except itself. It no longer makes
any sense separating the neurons into layers. The neurons are
simply labeled by Yi, i = 1, . . . , N .

3. The net has weights given by Hebb rule:

wij =

{∑Q
q=1 s

(q)
i s

(q)
j , if i 6= j

0, if i = j

for bipolar vectors. For binary vectors, each s(q) must be re-
placed by its bipolar equivalents 2s(q)−1 in the above expression.
The weight matrix is always symmetric and has zero diagonal
elements.
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Section 1: Discrete Hopfield Net 4

4. Signal from an input test pattern, x, is treated as an external sig-
nal that is applied to every neuron at each time step in addition
to the signal from all the other neurons in the net. This feature
can be omitted from the network with minor consequences.

5. Only one neuron updates its activation at a time (asynchronous
updating) based on the external signal and the signal that it
receives from all the other neurons.

6. Neurons are chosen at random to update their activations, and
neurons should be updated at the same average rate.

7. The transfer function is defined so that

yi = fHopfield(yin,i) =


1, if yin,i > θi

previous yi if yin,i = θi

−1, if yin,i < θi
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Section 1: Discrete Hopfield Net 5

for bipolar neurons, and

yi = fHopfield(yin,i) =


1, if yin,i > θi

previous yi if yin,i = θi

0, if yin,i < θi

for bipolar neurons. In either case, the thresholds, θi, are typi-
cally fixed at zero. The conventional Heaviside step function can
also be used instead of the more complicated form of transfer
function used above. The differences are minimal.

Suppose we are given an input test vector, x. For bipolar neurons,
the algorithm to find its associated pattern for the discrete Hopfield
net is:
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Section 1: Discrete Hopfield Net 6

1 Compute the weight matrix using Hebb rule. Set wii =
0.

2 Set initial activation equal to the given input test vector:
yi(0) = xi, i = 1, . . . , N .

3 Repeat steps a - c for t = 1, 2, . . . until no change in any
of the activations is possible.
a Choose a neuron, i, at random and with equal prob-

ability.
b Compute the net input

yin,i(t− 1) = xi +
N∑

j 6=i

yj(t− 1)wji

c Update the activations

yi(t) = fHopfield(yin,i(t− 1)).

For binary neurons, the training vectors, s(q), q = 1, . . . , Q, must
first be converted to bipolar form before applying Hebb rule to com-
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Section 2: Interpretation and Analysis of the Algorithm 7

pute the weight matrix. We must also use the binary form for the
transfer function to compute the activations for the neurons.

2. Interpretation and Analysis of the Algorithm

With the initial activations given by the test vector (y(0) = x), the
updating rule for the discrete Hopfield net

yi(t) = fHopfield(xi +
N∑

j 6=i

yj(t− 1)wji)

for t = 1, 2, . . ., describe the dynamics (time evolution) of the activa-
tions of a collection of N neurons

yi(t), for i = 1, 2, . . . , N and t = 1, 2, . . ..

The set {yi(t), i = 1, . . . , N} specifies the state of the network at time
t.

The space of all possible states of the network is called the con-
figuration space. Each point in the configuration space specifies a
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Section 2: Interpretation and Analysis of the Algorithm 8

state of the network. In the case of binary or bipolar neurons, the
configuration space consists of discrete points on a hypercube.

From the updating rule, it is clear that the activation of each
neuron directly influences the activations of other neurons one time
step later. The situation is like having a system of N interacting
particles whose positions at time t are specified by yi(t), i = 1, . . . , N .
Each particle exerts a force on all the other particles and thus directly
influences their subsequent positions. The given set of stored patterns
{s(q), q = 1, . . . , Q} , determines how one particle can influence the
other particles (that is the interactions).

A given test patterns specifies the initial (t = 0) state of the net-
work. The update rule governs the dynamics of the system (time
evolution of the state). It turns out that after some elapsed time
the state ceases to change and reaches a state of equilibrium. This
equilibrium state is then the network output for that particular test
pattern.

It can be shown that each stored pattern corresponds to a state of
equilibrium of the network. To see that, let us assume that our test
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Section 2: Interpretation and Analysis of the Algorithm 9

pattern is s(p). Therefore we set x = s(p) and y(0) = s(p), and so

yin,i(0) = s
(p)
i +

N∑
j 6=i

s
(p)
j wji = s

(p)
i +

N∑
j 6=i

s
(p)
j

Q∑
q=1

s
(q)
j s

(q)
i

= s
(p)
i +

N∑
j 6=i

s
(p)
j s

(p)
j s

(p)
i +

N∑
j 6=i

s
(p)
j

Q∑
q 6=p

s
(q)
j s

(q)
i

= Ns
(p)
i +

Q∑
q 6=p

s
(q)
i

N∑
j 6=i

s
(p)
j s

(q)
j .

This last term on the right-hand side is referred to as the crosstalk.
Assume for the moment that there is only one stored pattern, then

this crosstalk is zero. Then for i = 1, . . . , N , we have

yi(1) = fHopfield(yin,i(0)) = fHopfield(Ns
(p)
i ) = fHopfield(s(p)

i ) = s
(p)
i .

But this is exactly yi(0) and so none of the activation will change.
Thus the stored pattern is an equilibrium state of the network. More-
over, as long as the input test vector x is close enough to the store
vector, s(p), (in fact in this case, as long as the majority of the bits
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Section 2: Interpretation and Analysis of the Algorithm 10

in x agree with those in the stored vector), the network output after
reaching equilibrium will always be the stored vector.

When there is more than one stored pattern, the crosstalk is not
expected to be zero. Nevertheless, if N is large but Q is not too
large, and the stored vectors are not too correlated with each other
(that is the dot-products of each pair of the stored vectors are small
compared with N and tend to have different signs), then the crosstalk
is not large enough to change the overall signs for yin,i(0). As a result,
yi(1) will still be given by s

(p)
i .

Thus the stored patterns are equilibrium states of the network,
and they are referred to as attractors for the dynamic system. A test
vector (initial state) near any one of the stored pattern will converge
to that pattern. The network will correct errors as desired.

Clearly from the symmetry of the problem, for every attractor,
s(p), there is a corresponding attractor given by the reversed state,
−s(p). If a test vector has most of its bits opposite to those of s(p),
then the network will converge to −s(p).

For any given stored pattern (attractor), s(p), the region in config-
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Section 3: Lyapunov Function 11

uration space where any test vector will eventually converge to s(p),
is called the basin of attraction for that attractor.

It turns out that other than for the reversed states, there are spu-
rious attractors that have little direct relations to the stored patterns.
The entire configuration space can be decomposed into basins of at-
traction for the intended attractors and the spurious ones. Of course
we want to make sure that the basins of attraction for the spurious
attractors are relative small, so that most of the input test patterns
will converge to one of the stored patterns.

3. Lyapunov Function

Hopfield proved that the discrete Hopfield net converges to a stable
limit point corresponding to a set of activities by considering the fol-
lowing Lyapunov function (or referred to as the energy function)

L = −1
2

N∑
i 6=j

N∑
j=1

yiyjwij −
N∑

i=1

xiyi +
N∑

i=1

θiyi.
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Suppose at a given iteration step, neuron Yk is chosen to update its
activation so that yk becomes yk + ∆yk. The change in yk, ∆yk, is
determined from the discrete Hopfield algorithm. We also want to find
the change in the Lyapunov function, ∆L as a result of this change
in yk. To accomplish that, we first isolate from L all the terms that
involve yk.

First let us consider the first term on the right-hand side of the
expression for L. In the sum over j, there are term proportional to
yk when j = k. These terms are

−1
2

N∑
i 6=k

yiykwik.

The remaining terms also have terms proportional to yk, and these
terms

−1
2

N∑
j 6=k

ykyjwkj

come from setting i = k in the summation over i.

Toc JJ II J I Back J Doc Doc I



Section 3: Lyapunov Function 13

The other two terms on the right-hand side of the expression for
L also contain yk. These terms

−(xk − θk)yk

come from setting i = k in the sums.
Combining all the terms that involve yk, we have

−

1
2

N∑
i 6=k

yiwik +
1
2

N∑
j 6=k

yjwkj + xk − θk

 yk.

Notice that because of the no self-connection requirement, there
is no term which is proportional to the square of yk. Also notice that
the first term actually becomes the second term if the dummy index
i is replaced by j, and if use is made of the fact that wjk = wkj . The
resulting terms can be written as

−

 N∑
j 6=k

yjwkj + xk − θk

 yk.

These are the only term in L that contains yk.
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Section 3: Lyapunov Function 14

So when yk is changed by an amount ∆yk, then L is changed by
an amount

∆L = −

 N∑
j 6=k

yjwkj + xk − θk

∆yk.

We assume binary neurons here. The following argument applies
to bipolar neurons with only slight modifications (written in red)

First suppose that yk is 1 (1). If
∑N

j 6=k yjwkj +xk−θk < 0, and so
xk +

∑N
j 6=k yjwkj < θk, then yk will change to 0 (−1), and therefore

∆yk < 0. Thus

∆L = −

 N∑
j 6=k

yjwkj + xk − θk

∆yk < 0.

On the other hand, if
∑N

j 6=k yjwkj + xk − θk ≥ 0, and so xk +∑N
j 6=k yjwkj ≥ θk, then yk will remain unchange, and therefore ∆yk =

0, and so ∆L = 0.
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Section 3: Lyapunov Function 15

Next, suppose that yk is 0 (−1). If
∑N

j 6=k yjwkj +xk−θk > 0, and
so xk +

∑N
j 6=k yjwkj > θk, then yk will change to 1 (1), and therefore

∆yk > 0. Thus

∆L = −

 N∑
j 6=k

yjwkj + xk − θk

∆yk < 0.

On the other hand, if
∑N

j 6=k yjwkj + xk − θk ≤ 0, and so xk +∑N
j 6=k yjwkj ≤ θk, then yk will remain unchange, and therefore ∆yk =

0, and so ∆L = 0.
For bipolar neurons, there is actually one more case that has to

be considered. This is the case where yk = 0, meaning that its value
is uncertain.

If
∑N

j 6=k yjwkj + xk − θk > 0, and so xk +
∑N

j 6=k yjwkj > θk, then
yk will change to 1, and so ∆yk > 0. Thus

∆L = −

 N∑
j 6=k

yjwkj + xk − θk

∆yk < 0.
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Section 3: Lyapunov Function 16

If
∑N

j 6=k yjwkj + xk − θk < 0, and so xk +
∑N

j 6=k yjwkj < θk, then
yk will change to −1, and so ∆yk < 0. Thus

∆L = −

 N∑
j 6=k

yjwkj + xk − θk

∆yk < 0.

If
∑N

j 6=k yjwkj + xk − θk = 0, and so xk +
∑N

j 6=k yjwkj = θk, then
yk will remain at 0. Thus we have ∆yk = 0, and so ∆L = 0.

Consequently we see that in all cases the Lyapunov function, L,
cannot increase, it either decreases or remains unchange for that iter-
ation.

Moreover, L is clearly bounded below:

L > −1
2

N∑
i 6=j

N∑
j

|wij | −N −
N∑

i=1

|θi|.

Therefore the activations of the net must eventually reach a set of
stable equilibrium values such that the Lyapunov function does not
change with further iteration.

Toc JJ II J I Back J Doc Doc I



Section 4: Storage Capacity 17

The important features of the discrete Hopfield net that are nec-
essary for the proof are:

1. asynchronous updating

2. no self-connection
On the other hand, the following features are not important at all:
1. binary or bipolar neurons

2. external signal maintained during iteration

4. Storage Capacity

Because of the existence of spurious attractors, some errors in recalling
any of the stored vectors are expected in the discrete Hopfield net. In
the case of binary vectors, Hopfield found experimentally that the
number of patterns that can be recalled with reasonable accuracy is

C ≈ 0.15N.
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Section 5: Example 1: Discrete Hopfield Net 18

For a similar net with bipolar vectors, some others have found using
more detailed theoretical analysis that

C ≈ N

2 log2 N
.

5. Example 1: Discrete Hopfield Net

We consider the binary version of the example that we have considered
before for an iterative autoassociative net, in which the single binary
vector s =

[
1 1 1 0

]
is stored. Clearly we have Q = 1 and

N = 4. Hebb rule gives the weight matrix:

W =


0 1 1 −1
1 0 1 −1
1 1 0 −1

−1 −1 −1 0


assuming that the NN has no self connections. Note that the training
vector has to be converted to bipolar form before applying Hebb rule
to obtain the weight matrix.
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Section 5: Example 1: Discrete Hopfield Net 19

We now test the network with an input vector x =
[

0 0 1 0
]

that has mistakes in the first and second components. We assume that
the neurons update their activations in the following random order:
1, 4, 3, 2.

So we set y = x. We first update the activation for Y1:

yin, 1 = x1 +
4∑

j=1

yjwj1 = 0 + 1 = 1 ⇒ y1 = 1.

Thus y =
[

1 0 1 0
]
.

Next we update the activation for Y4:

yin, 4 = x4 +
4∑

j=1

yjwj4 = 0 + (−2) = −2 ⇒ y4 = 0.

Thus y4 and therefore y remain unchanged.
Then we update the activation for Y3:

yin, 3 = x3 +
4∑

j=1

yjwj3 = 1 + 1 = 2 ⇒ y3 = 1.
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Section 6: Example 2: Discrete Hopfield Net 20

Thus y3 and therefore y remain unchanged.
After that we update the activation for Y2:

yin, 2 = x2 +
4∑

j=1

yjwj2 = 0 + 2 = 2 ⇒ y2 = 1.

Thus y =
[

1 1 1 0
]
.

Since some activations have changed, in general we need to iterate
at least N = 4 more times to check to see if the net has converged.
However, since we have only one stored vector, and the current acti-
vation vector is exactly the stored vector, we can actually terminate
the iteration since we know that the net has reached an equilibrium.

6. Example 2: Discrete Hopfield Net

Next we consider storing two binary vectors

s(1) =
[

1 1 1 0
]

s(2) =
[

1 0 1 1
]
.

Toc JJ II J I Back J Doc Doc I



Section 6: Example 2: Discrete Hopfield Net 21

Clearly we now have Q = 2 and N = 4. Hebb rule gives the weight
matrix:

W =


0 0 2 0
0 0 0 −2
2 0 0 0
0 −2 0 0


assuming that the NN has no self connections.

We now test the network with an input vector x =
[

0 0 1 0
]

that has a Hamming distance of 2 from either of the two stored vectors.
We again assume that the neurons update their activations in the
following random order: 1, 4, 3, 2.

So we set y = x. We first update the activation for Y1:

yin, 1 = x1 +
4∑

j=1

yjwj1 = 0 + 2 = 2 ⇒ y1 = 1.

Thus y =
[

1 0 1 0
]
.
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Next we update the activation for Y4:

yin, 4 = x4 +
4∑

j=1

yjwj4 = 0 + 0 = 0 ⇒ y4 = 0.

Thus y4 and therefore y remain unchanged.
Then we update the activation for Y3:

yin, 3 = x3 +
4∑

j=1

yjwj3 = 1 + 2 = 3 ⇒ y3 = 1.

Thus y3 and therefore y remain unchanged.
After that we update the activation for Y2:

yin, 2 = x2 +
4∑

j=1

yjwj2 = 0 + 0 = 0 ⇒ y2 = 0.

Thus y2 and therefore y remain unchanged.
The only possible update that can change the activations is with

Toc JJ II J I Back J Doc Doc I



Section 7: Example 3: Discrete Hopfield Net 23

Y1:

yin, 1 = x1 +
4∑

j=1

yjwj1 = 1 + 2 = 3 ⇒ y1 = 1.

Thus y1 and therefore y remain unchanged. It is clear that the net
has converged to y =

[
1 0 1 0

]
. Unfortunately this is not one

of the stored vectors. It is a spurious vector.

7. Example 3: Discrete Hopfield Net

Next we consider storing the same two binary vectors, but now work
with their bipolar form

s(1) =
[

1 1 1 −1
]

s(2) =
[

1 −1 1 1
]
.

The weight matrix is the same as before:

W =


0 0 2 0
0 0 0 −2
2 0 0 0
0 −2 0 0

 .
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We now test the network with the bipolar version of the same input
vector as in example 2: x =

[
−1 −1 1 −1

]
that has a Hamming

distance of 2 from either of the two stored vectors. Note that this
input vector and the two stored vector are all mutually orthogonal.
We again assume that the neurons update their activations in the
following random order: 1, 4, 3, 2.

So we set y = x. We first update the activation for Y1:

yin, 1 = x1 +
4∑

j=1

yjwj1 = −1 + 2 = 1 ⇒ y1 = 1.

Thus y =
[

1 −1 1 −1
]
.

Next we update the activation for Y4:

yin, 4 = x4 +
4∑

j=1

yjwj4 = −1 + 2 = 1 ⇒ y4 = 1.

Thus y =
[

1 −1 1 1
]
, which is exactly s(2).
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Then we update the activation for Y3:

yin, 3 = x3 +
4∑

j=1

yjwj3 = 1 + 2 = 3 ⇒ y3 = 1.

Thus y3 and therefore y remain unchanged.
After that we update the activation for Y2:

yin, 2 = x2 +
4∑

j=1

yjwj2 = −1− 2 = −3 ⇒ y2 = −1.

Thus y2 and therefore y remain unchanged.
The only possible update that can change the activations is with

Y1 or Y4. However we find that there is no further changes in the
activations. Thus the net has converged to the stored vector s(2).
Actually from our earlier discussions, we could have stopped the it-
eration as soon as the activation vector becomes one of the stored
vectors (since the stored vectors are orthogonal to each other and so
there is no cross-talk).

However, if we had updated the neurons in the order: 1, 2, 3, 4,
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Section 7: Example 3: Discrete Hopfield Net 26

the first step will be the same, but the second step will give

yin, 2 = x2 +
4∑

j=1

yjwj2 = −1 + 2 = 1 ⇒ y2 = 1.

Thus y =
[

1 1 1 −1
]
, which is exactly s(1). Thus the net

converges to s(1) instead of s(2).
We see that although the discrete Hopfield net always converges to

one of the attractors, exactly which attractor it converges to actually
depends on the updating sequence.
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