POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Learning vector Quantization

K. Ming Leung

Abstract: Learning vector Quantization is a NN in-
vented by Kohonen for pattern classification. This NN
combines competitive learning with supervision.

Directory
e Table of Contents
e Begin Article

Copyright © 2009 mleung@poly.edu
Last Revision Date: April 29, 2009

mailto:mleung@poly.edu

NSk ®wbh =

Table of Contents

Introduction

LVQ Rule

Example 1: LVQ

Example 2: LVQ

Problems with LVQ

Using ”Conscience” to Prohibit Dead Neurons
An Improved LVQ: LVQ2

Section 1: Introduction 3
1. Introduction

Learning vector Quantization (LVQ) is a neural net that combines
competitive learning with supervision. It can be used for pattern
classification.

A training set consisting of () training vector - target output pairs
are assumed to be given

{S(q> ;t<q>}7 ¢=1,2,...,Q,

where s(?) are N dimensional training vectors, and t(?) are M dimen-
sional target output vectors. M is the number of classes, and it must
be smaller than Q). The target vectors are defined by

0 _ 1, if, s(9 belongs to class i
i 0, otherwise.

The LVQ is made up of a competitive layer, which includes a

competitive subnet, and a linear layer. In the first layer (not counting

the input layer), each neuron is assigned to a class. Different neurons
in the first layer can be assigned to the same class. Each of those

Toc <4« > | | 2 Back <« Doc Doc »

Section 1: Introduction 4

classes is then assigned to one neuron in the second layer. The number
of neurons in the first layer,), will therefore always be at least as
large as the number of neurons in the second layer, M.

In the competitive layer, neurons in the first layer learns a pro-
totype vector which allows it to classify a region of the input space.
Closeness between the input vector and any of the weight vectors is
measured by the smallness of the Euclidean distance between them.
A subnet is used to find the smallest element of the net input

Ix — wg;n
n — [x — W, l
Ix - W

and set the corresponding output element to 1, indicating that the
input vector belongs to the corresponding class, and set all others to
0. The action of this subnet is represented as a vector-valued vector
function

a® = compet(n™).

Toc <4< > | | 2 Back <« Doc Doc »

Section 2: LVQ Rule 5

Since some of these classes may be identical, they are really sub-
classes. The second layer (the linear layer) of the LVQ network is then
used to combine subclasses into a single class. This is done using the
W ® weight matrix which has element

1, if the ¢ neuron belong to a subcass of j,
Wij = .
0, otherwise.

Once W) is set, it will not be altered.
On the other hand, the weights, W), for the competitive layer
have to be trained using the Kohonen LVQ rule.

2. LVQ Rule

At each iteration one of the training vector is presented to the net-
work as input x, and the Euclidean distance from the input vector
to each of the prototype vector (forming columns of the weight ma-
trix) is computed. The hidden neurons compete. Neuron j* wins the
competition if the Euclidean distance between x and the j* prototype
vector is the smallest. The j* element of a(®) is set to 1 while others

Toc <4< > | | 2 Back <« Doc Doc »

Section 2: LVQ Rule 6

are set to 0. The activations a(®) is then multiplied by W on its
right to get the net input n(?. This produces the output of the entire
network a® = n® since the transfer function of the output neurons
is an identity function. a® also has only one nonzero element k*,
indicating that the input vector belongs to class k*.

The Kohonen rule is used to improve the weights of the hidden
layer in the following way. If x is classified correctly, then the weight
vector w i) of the winning hidden neuron is moved towards x

Aw_(jl*) =oa(x— W(Jl)) if a(2) =t = 1.
But if x is classified incorrectly, then it is clear that a wrong hidden

neuron won the competition. In this case its weight W(jl) is moved

away from x:

AW,(jl*) =—a(x— w(]lz) if a(2 =1 tge.

Toc <4< > | | 2 Back <« Doc Doc »

Section 3: Example 1: LVQ

3. Example 1: LVQ
Consider an LVQ network having the following weights:

wm_[01 -1 0 o0
W*_oo 0 1 -1
1.0 0 0 0
W@ =10110 0
0000 11

We want to answer the following questions:
e The total number of classes this LVQ network has.

e The total number of subclasses.

e To which class that a subclass belongs.

e The decision boundaries that separates each of the subclasses.
Since W) is 5 by 3, this LVQ network has 5 subclasses and 3 classes.
From the form of W) it is clear that subclass 1 belongs to class 1,
subclasses 2 and 3 belong to class 2, and subclasses 4 and 5 belong to

class 3.

Toc <4< > | | 2 Back <« Doc Doc »

Section 3: Example 1: LVQ

S subclass 4 d

A clags 3 4

| TR -

VN o

! 1
subclass 3 W,(;) psubdlass 11 W) subclass 2

1
®- + ©
1
1 W
I oclags1 1
===
’ AN
. w
N
’ o W N
e >
3 =4 N
P subclass 5 N
// N
16 N
, claps 3 R
4 N

Figure 1: Decision boundaries separating input space into subclasses.

Toc <4< > | | 2 Back <« Doc Doc »

Section 4: Example 2: LVQ 9

We assume here that we are using the square of the Euclidean
distance as a measure the closeness of vectors. The weight vector for
the i-th cluster unit is given by the i-th column of W), All input
vectors in the input vector space that are closest to the i-th weight
vector will belong to subclass i. Thus we draw the following decision
boundaries separating each subclass.

4. Example 2: LVQ

Suppose we are given the following training set:

class 1:
P-[2] ee[i]
p-i] e[}
class 2
P 1] -]

Toc <4« > | | 2 Back <« Doc Doc »

Section 4: Example 2: LVQ 10

initial state after one step after many steps
sW o wi o @ s@ o w o @ s w' W @
e T e © e 't e © ° + o
(1)
W
_ 1 - t t t t
- ~ (1)
Wg)o W.{;Uo .W.(.‘%
. (1)
(1) W
o 1 ° o 1 ° W'o 1 o °
s s s s s s®

Figure 2: LVQ after first and many iterations.

@ _| 1 @_10
=] w=[1]

Since s and s belong to class 1, and s and s® belong to
class 2, we choose a weight matrix

Toc <4« > | | 2 Back <« Doc Doc »

Section 4: Example 2: LVQ 11

1100
@ _
W‘[0011}

that connects neurons 1 and 2 to output neuron 1, and connects neu-
rons 3 and 4 to output neuron 2.
Initially each column of W) is set to random values. For example,

wd) — —0.543 wd) —0.969
L 0.840 2 | —0.249
@ _ | 0.997 1y _ | 0.456
371 0.094 4] 0.954

A randomly chosen training vector is then presented to the net-
work. Supposed s(®) is picked, then we have

Is® — w.(gn 2.40
Lo | s =wh | 2
Is® — w)| 1.09
1
”S(S) _ W.(4)|| 2.04

Toc <4< > | | 2 Back <« Doc Doc »

Section 4: Example 2: LVQ 12

Clearly the third hidden neuron has its weight vector closest to x(®)
and is therefore the winning neuron:

alV) = compet(nV)) =

o= OO

Thus

1100
2 = Ww@a() =
at =Wra {0011}

or oo
I
L ——

Since this is exactly t(3), this means that s(®) is correctly classified as

belonging to class 2.

Therefore hidden weight vector W(;) is moved closer to x®):

Awg) = a(X(S) — wg)).

Toc <4< > | | 2 Back <« Doc Doc »

Section 5: Problems with LVQ 13

Thus
@ _ | 0.997 Ly | 0997 _ 0.998
W = [0.094 +05 -1 0.094 | 0453 |’
where « is chosen to be 0.5.
The locations of the training vectors and their corresponding pro-
totype vectors are shown in the figure before and after this single
step.

After many iterations cycling through the training set, W(é) moves

close to s and w(?

moves close to s(1). These are the weight vectors

for class 1. At the same time, w,(g) moves close to s and W_(g) moves

close to s¥. These are the weight vectors for class 2.

5. Problems with LVQ

The LVQ network work well for many problems, but it suffers from
the following two limitations.

e As with competitive layers, sometimes a hidden neuron can have
initial weights that prevent it from ever winning any competi-

Toc <4« > | | 2 Back <« Doc Doc »

Section 6: Using ”Conscience” to Prohibit Dead Neurons 14

tion. This results in what is known as a dead neural that never
does anything useful. This problem can be solved using a ”con-
science” mechanism where a neuron that wins a lot of times will
attempt to let others to win.

e Depending on how the initial weight vectors are arranged, a
neuron’s weight vector may need to travel through a region of
a class that it doesn’t represent, to get to a region that it does
represent. Because the weights of such a neuron will be repelled
by vectors in the region it has to cross, it may never be able to
accomplish. Thus it may never properly classify the region to
which it is being attracted.

This second problem can be solve by applying the following modifica-
tion to the Kohonen rule, resulting in an algorithm known as LVQ2.

6. Using ”Conscience” to Prohibit Dead Neurons

Neurons that are too far from input vectors to ever win the compe-
tition can be given a chance by using adaptive biases that get more
negative each time a neuron wins the competition. The result is that

Toc <4« > | | 2 Back <« Doc Doc »

Section 6: Using ”Conscience” to Prohibit Dead Neurons 15

neurons that win very often start to ”feel guilty” until other neurons
have a chance to win.
A typical learning rule for the bias b; of neuron i is

pnew _ 09601 if i
‘ pld _ 02, if =

To see the effect of ”conscience”, we consider the following exam-
ple of a SOM network. We assume that we are given three training
vectors:

sgl) = [-1 0]

552) = [0 1 }
3 _ | 1L 1

S = Vv2 V2

The exemplar vectors are stored in the columns of the weight ma-

Toc <4« > | | 2 Back <« Doc Doc »

Section 6: Using ”Conscience” to Prohibit Dead Neurons 16

trix

0 —-=2 _L
wo| 48
V5 V5

If we ignore the biases, it is clear that no matter which order the
training vectors are presented to the network for training, the first
cluster unit has no way of ever wining the competition and move
closer to one of the training vectors. It is a dead neuron.

On the other hand, if biases are used and the above conscience
rule to update them, even though they may initially have zero values,
eventually the first cluster unit will have a chance to win and move
closer to one of the training vectors.

For example, if we use a learning rate of 0.5 and the above con-
science rule to update the biases, we find that it takes 18 cycles
through the training set before the first cluster unit wins and move
closer to one of the training vectors.

After 29 cycles through the training set, the exemplar vectors are
close enough to their corresponding clusters (each containing only a
single point).

Toc <<« > > < > Back <« Doc Doc b

Section 6: Using ”Conscience” to Prohibit Dead Neurons

Initial configuration Configuration after 17 iterations
1 1
L] L]
0.5 0.5
Ofe 0ot
-0.5 -0.5
o y . y
-1 0 1 -1 0 1
Configuration after 18 iterations Configuration after 29 iterations
1 1
L] P L]
0.5 0.5
0 o=t 0 et
-0.5 -0.5
-1 -1
-1 0 1 -1 0 1

Figure 3: SOM with conscience.

Toc << > > <« | g Back

17

<« Doc Doc »

Section 7: An Improved LVQ: LVQ2 18

7. An Improved LVQ: LVQ2

According to LVQ2, if the winning neuron in the hidden layer incor-
rectly classifies the current input, its weight vector is moved away
from the current input vector, as before.

However, the weight vector of the closest neuron to the input vec-
tor that does correctly classify it is moved toward the input vector.

Thus when the network correctly classifies an input vector, the
weight vector of only one neuron is moved toward the input vector.
However, if the input vector is incorrectly classified, the weight vectors
of two neurons are updated, one weight vector is moved away from the
input vector, and the other one is moved towards the input vector.

Toc <4« > | | 2 Back <« Doc Doc »

Section 7: An Improved LVQ: LVQ2 19

References

[1] See Chapter 14 in M. T. Hagan, H. B. Demuth, and M. Beale,
”Neural Networks Design”, PWS Publishing, 1996.

Toc <4« > | | 2 Back <« Doc Doc »

	Table of Contents
	1 Introduction
	2 LVQ Rule
	3 Example 1: LVQ
	4 Example 2: LVQ
	5 Problems with LVQ
	6 Using "Conscience" to Prohibit Dead Neurons
	7 An Improved LVQ: LVQ2

