
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Kohonen Self-Organized Maps

K. Ming Leung

Abstract: The Kohonen Self-Organized Maps for clus-
tering a set of continuous input vectors is discussed.
This NN is trained by unsupervized learning.

Directory
• Table of Contents
• Begin Article

Copyright c© 2007 mleung@poly.edu
Last Revision Date: April 24, 2007

mailto:mleung@poly.edu


Table of Contents

1. Topology of neurons within a layer

2. Kohonen Self-Organizing Maps
2.1. Example: SOM

3. Another example

4. Remarks



Section 1: Topology of neurons within a layer 3

1. Topology of neurons within a layer

In the nets we have studied so far, we have ignored the geometrical
arrangements of the output neurons. Each neuron in a given layer
has identical behavior in that each one receives the signals from the
input layer and reacts individually in a similar way. The behavior
of one neuron is independent of the behaviors of other neurons in
its neighborhood within the layer. We are now going to take into
consideration that physical arrangement (the topology) of these nodes.
Nodes that are ”close” together are going to interact differently than
nodes that are ”far” apart. In the brain, neurons tend to cluster in
groups. The interactions of the neurons within the group are much
greater than those outside the group. The Kohonen self-organizing
maps are neural networks that try to mimic this feature in a simple
way.

Kohonen self-organizing maps (SOM) are also known as the topology-
preserving maps, since a topological structure of the output neurons
are assumed, and this structure is maintained during the training pro-
cess. Each output neuron is referred to as a cluster unit. Typically

Toc JJ II J I Back J Doc Doc I



Section 1: Topology of neurons within a layer 4

two types of topologies are considered for the output layer: linear and
two-dimensional arrays. The following are examples of such geome-
tries.

An example of a linear output layer:

* * * 2 1 0 1 2 * *

An example of a two-dimensional array of output neuron arranged
on a square lattice:

* * * * * * * * * *
* * * 2 2 2 2 2 * *
* * * 2 1 1 1 2 * *
* * * 2 1 0 1 2 * *
* * * 2 1 1 1 2 * *
* * * 2 2 2 2 2 * *
* * * * * * * * * *

Toc JJ II J I Back J Doc Doc I



Section 1: Topology of neurons within a layer 5

and on a hexagonal lattice:

* * * * *
* 2 2 2 *

* 2 1 1 2
2 1 0 1 2

* 2 1 1 2
* 2 2 2 *

* * * * *

In SOM, learning occurs unsupervized (that is why it is called
self-organizing), that means that targeted outputs are not known or
given. At each step of the training process, there are competitions
among the output neurons (cluster units) with a resulting single win-
ner, denoted by ”0” in the above illustrations. The weights connected
to the winning neuron, as well as the weights connected to the win-
ning neuron’s first and second neighborhoods are updated in a similar
fashion. Neurons in its first and second neighborhoods are labeled

Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 6

here by ”1” and ”2” respectively. All the other neurons are labeled
by ”*”.

If a winning neuron is located close to the edge of the grid, then
some neighborhoods may have fewer neurons. Neighborhoods do not
”wrap around” from one side of the grid to the other; missing neurons
are simply ignored in the updating process.

2. Kohonen Self-Organizing Maps

Kohonen SOM is designed to group a set of Q continuous-valued vec-
tors s(q) =

[
s
(q)
1 s

(q)
2 . . . s

(q)
N

]
, q = 1, . . . , Q, into M(< Q) clus-

ters. The SOM thus consists of an input layer having N neurons,
and an output layer having M neurons (cluster units) arranged in
some predetermined fashion. Each neuron in the input layer is con-
nected to a neuron in the output layer. Thus output neuron (cluster
units) j is connected to each of the input neuron through weights
wij , i = 1, . . . , N , which is referred to as the j-th weight vector.
In vector or matrix notation, we denote the j-th weight vector by
W.j =

[
w1j w2j . . . wNj

]
. It is given by the j-th column of

Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 7

the weight matrix. There is a total of M such weight vectors, one for
each cluster units. Each one of these weight vectors serves as an exem-
plar of the input patterns associated with that cluster. Unless some
prior information is known about the clusters, these weight vectors
are typically initialized to some random values.

During the training process, each training vector is cyclically or
randomly selected and presented to the network. The cluster unit
j′ whose weight vector W.j′ matches the input pattern x the most
closely is chosen as the winner. Here two vectors are considered closest
if the square of the Euclidean distance between them, ‖x − W.j′‖2

is the smallest. The winning unit and its neighboring units (those
located in its first and second neighborhoods) then update their weight
vectors according to the Kohonen rule. This process is continued until
the weight vectors change by less than a preset amount.

Unless the dot-product is used to measure the closeness of two vec-
tors, the input vector does not get multiplied with the weight vectors,
as we have been doing so far. Instead it is the square of the Euclidean

Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 8

distance between the input vector and each of the weight vectors

dj = ‖x−W.j‖2 = ‖x‖2 + ‖W.j‖2 − 2x ·W.j

that is computed Therefore for a given input vector x, the weight
vector j′ whose dj′ is the smallest is always the one which has the
largest dot-product with x only if the variation in the magnitudes of
the weight vectors can be ignored. This happens if the weight vectors
are constrained to have the same magnitude.

The SOM algorithm is:

Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 9

1 Initialize M weight vectors. Set topological neighborhood
parameters and learning rate, α(< 1).

2 For step k = 1, 2, . . ., do steps a - d by cycling through
training set until weight vectors converge
a Set input vector x = s(q), one of the training vectors.
b Compute for each cluster unit j = 1, . . . ,M the Eu-

clidean distance

dj =
N∑

i 6=1

(xi − wij(k))2.

c Find the index j′ such that dj′ is a minimum.
d For all cluster units j within the specified neighborhoods

of j′, update the weight vectors

wij(k +1) = wij(k)+α [xi − wij(k)] , i = 1, . . . , N.

e May reduce the learning rate.
f May reduce the radii that define the topological neigh-

borhoods.

Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 10

The above updating rule moves the weight vectors for the winning
neuron and those in its neighborhood towards the input vector. The
amount of change is proportional to α. In the extreme limit of α = 1,
all these weight vectors are set to the input vector.

During training, the learning rate can be decreased linearly, that
is

α(k) =
α(1)

k
where k = 1, 2, . . . is the iteration counter. Geometric decrease of α:

α(k + 1) = fα(k)

where 0 < f < 1, also works. In general convergence may required
many iterations through the training set.

2.1. Example: SOM

We now consider an example where 4 input vectors

s(1) =
[

1 1 0 0
]

s(2) =
[

0 0 0 1
]

s(3) =
[

1 0 0 0
]

s(4) =
[

0 0 1 1
]

Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 11

are to be grouped into 2 clusters. It is clear that N = 4, M = 2 and
Q = 4.

We will be using matrix notation for convenience. However, the
input vectors are row vectors but the weight vectors are column vec-
tors. To make them compatible we will transpose the weight vectors
to form row vectors.

Suppose the initial learning rate is α(1) = 0.6, and we use a ge-
ometric schedule with f = 0.5 for decreasing α. For simplicity we
shrink the topological radii to zero so that only the winning neuron
has its weight vector updated. We assume that the initial weight
matrix is given by

W =


0.2 0.8
0.6 0.4
0.5 0.7
0.9 0.3

 .

During training, the input vectors are presented to the NN one at

Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 12

a time in the given order. For x = s(1), we have
d1 = ‖

[
0.2 0.6 0.5 0.9

]
−

[
1 1 0 0

]
‖2

= ‖
[
−0.8 −0.4 0.5 0.9

]
‖2 = 1.86.

and
d2 = ‖

[
0.8 0.4 0.7 0.3

]
−

[
1 1 0 0

]
‖2

= ‖
[
−0.2 −0.6 0.7 0.3

]
‖2 = 0.98.

Since d2 is the smallest, the winning neuron is j′ = 2. So we update
the second weight vector

W·2 =
[

0.8 0.4 0.7 0.3
]
+

α(1)
([

1 1 0 0
]
−

[
0.8 0.4 0.7 0.3

])
=

[
0.92 0.76 0.28 0.12

]
.

The weight matrix is now given by

W =


0.2 0.92
0.6 0.76
0.5 0.28
0.9 0.12

 .

Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 13

Then we present x = s(2). we find
d1 = ‖

[
0.2 0.6 0.5 0.9

]
−

[
0 0 0 1

]
‖2

= ‖
[

0.2 0.6 0.5 −0.1
]
‖2 = 0.66.

and
d2 = ‖

[
0.92 0.76 0.28 0.12

]
−

[
0 0 0 1

]
‖2

= ‖
[

0.92 0.76 0.28 −0.88
]
‖2 = 2.2768.

Since d1 is the smallest, the winning neuron is j′ = 1. So we update
the first weight vector

W·1 =
[

0.2 0.6 0.5 0.9
]
+

α(1)
([

0 0 0 1
]
−

[
0.2 0.6 0.5 0.9

])
=

[
0.92 0.76 0.28 0.12

]
.

The weight matrix is then given by

W =


0.08 0.92
0.24 0.76
0.20 0.28
0.96 0.12

 .

Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 14

We continue this process for the remaining two training vectors in the
data set to obtain the weight matrix

W =


0.032 0.968
0.096 0.304
0.680 0.112
0.984 0.048


after the first epoch. Next we reduce the learning rate by a multiplica-
tive factor f = 0.5 and repeat another round through the training set.

After 100 iterations, the learning rate decreases to 0.006, and the
weight matrix becomes

W =


1.61e− 4 0.99984
2.0e− 16 0.49376

0.50616 5.65e− 4
0.99992 2.42e− 4



Toc JJ II J I Back J Doc Doc I



Section 2: Kohonen Self-Organizing Maps 15

and appears to be approaching

W =


0 1
0 0.5

0.5 0
1 0

 .

Notice that the weight vector for cluster 1, W·1, is exactly at the half
way point between s(2) and s(4):

1
2

(
s(2) + s(4)

)
=


0
0

0.5
1

 = W·1,

and the weight vector for cluster 2, W∗2, is exactly at the half way
point between s(1) and s(3):

1
2

(
s(1) + s(3)

)
=


1

0.5
0
0

 = W·2.

Toc JJ II J I Back J Doc Doc I



Section 3: Another example 16

These are the expected results since s(1) and s(3) are closest together
(the square of the Euclidean distant between them is 1, the smallest)
and together they form cluster 2. Similarly, s(2) and s(4) are closest
together (the square of the Euclidean distant between them is 1, the
smallest) and together they form cluster 1.

‖s(i) − s(j)‖2 s(1) s(2) s(3) s(4)

s(1) 0 3 1 4
s(2) 3 0 2 1
s(3) 1 2 0 3
s(4) 4 1 3 0

3. Another example

We consider grouping 6 training vectors into 3 clusters. The training
vectors all have unit magnitude and so they lie on the unit circle.
Although we are not supposed to know at the outset, these vectors
actually can be separated into 3 pairs. The first pairs are located at

Toc JJ II J I Back J Doc Doc I



Section 3: Another example 17

±11o from 90o, the second pair at ±11o from 0o, and the third pair
at ±11o from −135o. Thus the training set is{

s(q) =
[

cos(θ(q)) sin(θ(q))
]
, q = 1, 2, . . . , 6

}
where θ(q) specifies the angles of the training vectors in radians. Thus
we have N = 2, M = 3, and Q = 6.

The weight vectors for the 3 clusters are initially taken to be unit
vectors at −45o, 45o, and 180o, respectively. Therefore the initial
weight matrix is

W =

[
1√
2

1√
2

−1

− 1√
2

1√
2

0

]
Notice that these initial exemplar vectors are not pointing at any

of the clusters. This choice of W was chosen intentionally to provide
a stringent test of the ability of our NN to cluster the given input
vectors. In general, the initial exemplar vectors for each of the clusters
should be chosen randomly.

In reality, of course we do not know how to separate the input

Toc JJ II J I Back J Doc Doc I



Section 3: Another example 18

vectors into separate clusters. That is we have no idea which vector
belong to which of the cluster, nor do we know the number of vectors
in each of the clusters. All that will be determined by the NN at the
end. The only thing we know at the beginning is that we want to
separate the input vectors into 3 clusters.

Notice that although the training vectors and the weight vectors
are all unit vectors, Kohonen’s updating rule does not preserve the
magnitude of the weight vectors. Of course it can be modified to do
just that if we want to. In that case, for a given input vector, the
winning neuron can be chosen to be the cluster unit whose weight
vector has the largest dot-product with the input vector.

For the present problem, it is obvious that the correct final orien-
tations for the weight vectors are at 90o, 0o, and −135o (the ordering
is totally irrelevant). We find that a constant learning rate of about
0.05 works very well for the present problem.

Toc JJ II J I Back J Doc Doc I



Section 4: Remarks 19

4. Remarks

1. During the clustering process, it may be a good idea to gradu-
ally reduce the topological neighborhood of each of the output
neurons.

2. The weight vector forming the prototype of a cluster may invade
the territory of a nearby weight vector and as a result upset the
current clustering scheme.

3. A cluster unit’s initial weight vector may be located so far from
any input vector that it may never be chosen as the winning
neuron. Such neurons are dead and should be pruned.

Toc JJ II J I Back J Doc Doc I



Section 4: Remarks 20

References

[1] See Chapter 4 in Laurene Fausett, ”Fundamentals of Neural Net-
works - Architectures, Algorithms, and Applications”, Prentice
Hall, 1994.

Toc JJ II J I Back J Doc Doc I


	Table of Contents
	1 Topology of neurons within a layer
	2 Kohonen Self-Organizing Maps
	2.1 Example: SOM

	3 Another example
	4 Remarks

