
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Simple Neural Networks for
Pattern Classification

K. Ming Leung

Abstract: A simple neural network capable of classi-
fying patterns into two categories is introduced. It is
trained using Hebb’s learning rule.

Directory
• Table of Contents
• Begin Article

Copyright c© 2008 mleung@poly.edu
Last Revision Date: January 31, 2008

mailto:mleung@poly.edu

Table of Contents

1. Simple NN for Pattern Classifications

2. Linearly-Separability and Decision Boundary

3. Hebb Rule

4. Applications
4.1. Bipolar Logical Function: AND
4.2. Character Recognition

5. Remarks on Hebb’s Learning Rule

Section 1: Simple NN for Pattern Classifications 3

1. Simple NN for Pattern Classifications

We consider here the simplest type of NN capable of performing pat-
tern classifications into two categories. For example, each input char-
acter must be classified as capital letter ”X” or capital letter ”O”.

Since the output of the NN has only two possible values (a value for
each of the two categories), we can choose an output layer containing
only a single neuron of binary or bipolar value. For simplicity we
assume an input layer with n binary or bipolar input neurons, Xi, i =
1, · · · , n. We also assume that we do not need any hidden layers.
Thus we are interested in the NN as shown in the figure.

For i = 1, · · · , n the activation of neuron Xi is denoted by xi.
Here we assume that the neurons all have bipolar values, and thus
xi = ±1. The case for neurons having binary values can obtained by
straightforward modifications of the results here.

The input signal can then be represented by a vector x = [x1x2 . . . xn].
In the case of character recognition, this vector can be obtained for
example, by discretizing the input character on a rectangular grid,
with black dots representing by 1 and white dots by -1. The input

Toc JJ II J I Back J Doc Doc I

Section 1: Simple NN for Pattern Classifications 4

X1

X2

Xn

Y

x1

x2

xn

y

w1

w2

wn

Figure 1: A feedforward NN having N input and 1 output neurons.

Toc JJ II J I Back J Doc Doc I

Section 1: Simple NN for Pattern Classifications 5

vector x is then obtained by concatenating those values column-wise
or row-wise.

We assume that input neuron Xi, i = 1, · · · , n is connected to
the output neuron, Y , with a weight of wi. We denote the output of
neuron Y by y, and so y = ±1.

The total input received by neuron Y is then given by

yin = x1w1 + x2w2 + . . .+ xnwn =
n∑
i=1

xiwi = x ·w.

We assume that the transfer function, f , is given by the bipolar step
function with threshold θ, that is

fθ(x) =

{
+1, if x ≥ θ,
−1, if x < θ.

Therefore the network output is

y = fθ(yin) =

{
+1, if

∑n
i=1 xiwi ≥ θ,

−1, if
∑n
i=1 xiwi < θ.

Toc JJ II J I Back J Doc Doc I

Section 1: Simple NN for Pattern Classifications 6

Thus the output y can be computed for any given input x provided
that the weights w and the threshold, θ are known.

The above equation can be rewritten as

y = fθ(yin) =

{
+1, if − θ +

∑n
i=1 xiwi ≥ 0,

−1, if − θ +
∑n
i=1 xiwi < 0.

In the above expression, the term −θ can be considered as a bias
b = −θ. Therefore the threshold can be eliminated completely if we
introduce an additional input neuron, X0, whose value is always given
by x0 = 1, and is connected to the output neuron Y with a weight of
w0 = b = −θ. Thus the above equation can be re-written as

y = f(yin) =

{
+1, if

∑n
i=0 xiwi ≥ 0,

−1, if
∑n
i=0 xiwi < 0,

where the transfer function is just the bipolar step function (with zero
threshold):

f(x) =

{
+1, if x ≥ 0,
−1, if x < 0.

Toc JJ II J I Back J Doc Doc I

Section 1: Simple NN for Pattern Classifications 7

This trick will often be used to remove the presence of a threshold or
bias in a neuron.

Of course in order to compute the output we need to know the
weights (and the bias). We will consider here the case of supervised
learning first. This means that a set of learning patterns are given
together with their corresponding target output. This is referred to
as the training set:

{s(q), t(q)}, q = 1, 2, . . . , Q.

For q = 1, 2, . . . , Q, s(q) is one of the training patterns, and t(q) is its
corresponding targeted output value.

The NN has to be trained using the training set before it can
be used to solve problems. During the training process, each of the
training vector is presented to the NN as input, and the weights and
bias(es) are then adaptively adjusted so that the NN correctly classi-
fies all (or nearly so) the training patterns.

There are a few possible supervised training algorithms of interest
here:

1. Hebb rule
Toc JJ II J I Back J Doc Doc I

Section 2: Linearly-Separability and Decision Boundary 8

2. perceptron learning rule

3. delta (or least mean squares) rule
We will consider the Hebb rule in this chapter. The perceptron

learning rule and the delta rule will be considered in subsequent chap-
ters.

But before we introduce the Hebb rule, we want to define what
is meant by a decision boundary, and consider the important idea of
linear separability.

2. Linearly-Separability and Decision Boundary

We define what is known as the decision boundary and introduce a
very important concept called linear separability.

For a given weight vector w = [w1w2 . . . wn] and bias b, the de-
cision boundary is a hyperplane of dimension n − 1 given by points
x = [x1x2 . . . xn] which obey the equation

b+
n∑
i=1

xiwi = b+ x ·w = 0.

Toc JJ II J I Back J Doc Doc I

Section 2: Linearly-Separability and Decision Boundary 9

We move b to the right-hand side and divide the equation by the
magnitude of w to obtain (recall that b = −θ):

ŵ · x =
θ

w
,

where ŵ is a unit vector (of unit magnitude) pointing in the direction
of w, and w = |w| is the magnitude of w. Thus we see that this
hyperplane is perpendicular to w, cutting it at a distance of θ

w from
the origin. If b is positive, then θ is negative, in that case the hyper-
plane cuts the vector w at a distance of −θw on the opposite side of
w from the origin. It is clear that each given set of weights and bias
determine a unique decision boundary.

For a given training set, if the training vectors whose target values
are equal to +1, can be separated from those training vectors whose
target values are equal to −1 by a hyperplane, then the problem is said
to be linearly-separable. Clearly we can hope to be able to properly
train a NN only if the problem is linearly-separable.

Toc JJ II J I Back J Doc Doc I

Section 2: Linearly-Separability and Decision Boundary 10

x1

x2
W

/|w|

+

+

+

+

+

- -

-
-

Figure 2: A decision boundary (hyperplane) separating input vectors
belonging to the two different classes.

Toc JJ II J I Back J Doc Doc I

Section 3: Hebb Rule 11

3. Hebb Rule

Hebb learning occurs by modification of the synapse strengths (weights)
in a way that if 2 interconnected neurons are both ”on” (or both ”off”),
then the weight should be further increased. For bipolar neurons, the
change in the weight wi for any i is given by

∆wi = wnew
i − wold

i = xiy.

for the bias, since it can be replaced by a neuron whose input value
is always fixed at 1, the updating rule for it is

∆b = bnew − bold = y.

Toc JJ II J I Back J Doc Doc I

Section 3: Hebb Rule 12

The Hebb rule is:
1. Initialize all weights and bias to zero (or some ran-

dom values).

2. For each input training vector s(q) and target t(q)

pairs, go through the following steps
(a) Set activations for input vector x = s(q).
(b) Set activation for the output unit y = t.
(c) Adjust weights and bias:

wnew = wold + xy,

bnew = bold + y.

Note that we go through the training set in a single pass. The
ordering of the training vectors in the training set does not matter.
In fact if the initial weight vector and bias are given by w(0) and b(0)
respectively, the Hebb rule goes through the loop:

w(k) = w(k − 1) + s(k)t(k), b(k) = b(k − 1) + t(k)

Toc JJ II J I Back J Doc Doc I

Section 3: Hebb Rule 13

for k = 1, . . . , Q simply gives the following final results

w = w(0) +
Q∑
k=1

s(k)t(k), b = b(0) +
Q∑
k=1

t(k).

Every step in the Hebb’s learning rule tends to move the decision
boundary in such a way to better classify the particular training vector
presented to the NN. It is easier to understand how the rule works
especially if the bias is removed (absorbed). In that case, we have at
the k-th step

w(k) = w(k − 1) + s(k)t(k),

thus

w(k) = w(k − 1) + s(k), ift(k) = +1,

and

w(k) = w(k − 1)− s(k), ift(k) = −1.

The following diagram explains the reasoning behind the Hebb’s rule.

Toc JJ II J I Back J Doc Doc I

Section 3: Hebb Rule 14

t
(k)

= -1

s
(k)

W
(k) W

(k-1)

t
(k)

= -1 s
(k)

W
(k)

W
(k-1)

t
(k)

= +1

s
(k)

W
(k)

W
(k-1)

t
(k)

= +1 s
(k)

W
(k)

W
(k-1)

Figure 3: One step in Hebb’s rule, assuming either the threshold is
absent or absorbed in the zeroth component.

Toc JJ II J I Back J Doc Doc I

Section 4: Applications 15

It should be remarked that Hebb’s rule should not be used in its
present form with binary output neurons, since the NN cannot learn
any training vector whose target output is 0.

4. Applications

We will apply the Hebb rule to 2 NNs. We will use matrix notation
to represent the vectors. Input and training vectors are row vectors,
and the weight vector is a column vector. Therefore we write

yin = b+ xw

and

w = w(0) +
Q∑
k=1

t(k)s(k)T , b = b(0) +
Q∑
k=1

t(k).

where superscript T represents the transpose.

4.1. Bipolar Logical Function: AND

The training set is given by the following table:

Toc JJ II J I Back J Doc Doc I

Section 4: Applications 16

We assume that the weights and bias are initially zero. Therefore

w =
[

1
1

]
−
[

1
−1

]
−
[
−1
1

]
−
[
−1
−1

]
=
[

2
2

]
,

and

b = 1− 1− 1− 1 = −2.

The first thing one must do after trainingq s(q) t(q)

1 [1 1] 1
2 [1 -1] -1
3 [-1 1] -1
4 [-1 -1] -1

is to see how the NN performs on the training
data itself.

For q = 1, we have

yin = b+s(1)w = −2+
[

1 1
] [2

2

]
= 2.

Since yin ≥ 0, the network output is y = 1, which is the correct result.
Similarly,

yin = b+ s(2)w = −2 +
[

1 −1
] [2

2

]
= −2 ⇒ y = −1,

Toc JJ II J I Back J Doc Doc I

Section 4: Applications 17

yin = b+ s(3)w = −2 +
[
−1 1

] [2
2

]
= −2 ⇒ y = −1,

yin = b+ s(4)w = −2 +
[
−1 −1

] [2
2

]
= −6 ⇒ y = −1,

Thus the NN has learnt to perform perfectly for the training patterns.
Next we want to see how well the NN perform on patterns that it

has not seen before. For the present example involving n = 2 bipolar
vectors, we have no other vectors besides the training vectors. How-
ever from the weights and bias, we know that the decision boundary
is given by

−2 + 2x1 + 2x2 = 0.

This gives the straight line

x2 = −x1 + 1,

having a slope of −1 and passing through the point [10]. Clearly not
only does this decision boundary work for this training set, and it is
actually the best solution in the sense that the ANN will perform well
even in the presence of substantial noise.

Toc JJ II J I Back J Doc Doc I

Section 4: Applications 18

x1

x2

W
+

-

-

-

1-1

1

-1

Figure 4: For zero initial weights and bias, Hebb’s rule finds the best
decision boundary for the AND function.

Toc JJ II J I Back J Doc Doc I

Section 4: Applications 19

4.2. Character Recognition

We will use the Hebb rule to train the NN to distinguish between
pattern ”X” and the pattern ”O”. These two patterns are discretized
on a 5× 5 grid.
. . . # . # # # .
. # . # . # . . . #
. . # . . # . . . #
. # . # . # . . . #
. . . # . # # # .

We assign each ”#” the value 1, and each ”.” the value −1. The two-
dimension patterns are converted to input vectors by concatenating
the rows.

Thus the training set includes

s(1) =

[1 −1 −1 −1 1 −1 1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 1 −1 1 −1 −1 −1 1]
with t(1) = 1, and

s(2) =
Toc JJ II J I Back J Doc Doc I

Section 4: Applications 20

[−1 1 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 1 −1]
with t(2) = −1.

From Hebb’s rule, we obtain

w =

[2 −2 −2 −2 2 −2 2 0 2 −2 −2 0 2 0 −2 −2 2 0 2 −2 2 −2 −2 −2 2]
and b = 0.

Again we first check to see if the trained NN perform well with the
training data. For pattern 1, one finds that yin = 42, and so y = 1,
and for pattern 2, yin = −42, and so y = −1. Thus the NN works
well with the training data.

It is important to realize that the NN will give reasonable response
even with patterns that it has not seen before. In particular, this
will happen even when it is presented with input patterns that are
imperfect. There are two important types of imperfection:

1. one or more components of the input vectors have their signs
reversed.

2. one or more components of the input vectors are missing (for

Toc JJ II J I Back J Doc Doc I

Section 5: Remarks on Hebb’s Learning Rule 21

example not measured by a scanner). These missing values may
represent a 1 or a −1 but we are not sure, so we sometimes
assign them a value of 0 (for bipolar vectors).

5. Remarks on Hebb’s Learning Rule

There is no proof that Hebb’s learning rule will always gives a set
of weights and bias that allows the NN to correctly classify all the
patterns in the training set. In fact it is easy to come up with examples
where Hebb’s learning rule fails to train a NN for even patterns in the
training set.

Consider the following training set:

q s(q) t(q)

1 [1 1 1] 1
2 [1 1 -1] -1
3 [1 -1 1] -1
4 [-1 1 1] -1

Assuming zero initial weights and bias, Hebb’s rule gives w = [000]

Toc JJ II J I Back J Doc Doc I

Section 5: Remarks on Hebb’s Learning Rule 22

and b = −2. Therefore for any input vector

yin = b+ xw = −2

always! The NN will therefore fails even with the training patterns.
However, if one graphs the training set in a three-dimension plot,
it is clear that this problem is linearly separable and therefore has
solutions, that is, there are (actually infinitely number of) weights
and biases that will enable the NN to correctly classify all the training
patterns. However Hebb’s rule fails to find a set of weights and bias
that works (unless we happen to choose a correct set of starting values
for the weights and bias).

Suppose we absorb the bias, and take the initial weights to be zero,
the Hebb’s rule gives

w =
Q∑
k=1

t(k)s(k)T .

We want to find the response of the NN when one of the training

Toc JJ II J I Back J Doc Doc I

Section 5: Remarks on Hebb’s Learning Rule 23

x1

x2

x3

+-

-

-

Figure 5: This problem is clearly linearly separable, however Hebb’s
rule fails to find an acceptable decision boundary.

Toc JJ II J I Back J Doc Doc I

Section 5: Remarks on Hebb’s Learning Rule 24

vector s(m) is presented to it. We find that

yin = s(m)w = s(m)

Q∑
k=1

t(k)s(k)T = |s(m)|2t(m) +
Q∑

k =m

t(k)s(m)s(k)T .

The last term vanishes if the training vectors are mutually orthogonal.
In that case, we have

y = f(yin) = f(|s(m)|2t(m)) = f(t(m)) = t(m)

which is the desire correct result. Therefore Hebb’s rule always finds
a set of weights and bias that correctly classify the training vectors if
they are mutually orthogonal. Otherwise there is no guarantee that
it will do so.

For training vectors that are not mutually orthogonal, the last
term involving dot-products is not expected to be zero. It is due to
”cross-talk” between the different patterns.

Toc JJ II J I Back J Doc Doc I

Section 5: Remarks on Hebb’s Learning Rule 25

References

[1] See Chapter 2 in Laurene Fausett, ”Fundamentals of Neural Net-
works - Architectures, Algorithms, and Applications”, Prentice
Hall, 1994.

Toc JJ II J I Back J Doc Doc I

	Table of Contents
	1 Simple NN for Pattern Classifications
	2 Linearly-Separability and Decision Boundary
	3 Hebb Rule
	4 Applications
	4.1 Bipolar Logical Function: AND
	4.2 Character Recognition

	5 Remarks on Hebb's Learning Rule

