
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Perceptron for Pattern
Classification

K. Ming Leung

Abstract: A neural network, known as the perceptron,
capable of classifying patterns into two or more cate-
gories is introduced. The network is trained using the
perceptron learning rule.

Directory
• Table of Contents
• Begin Article

Copyright c© 2008 mleung@poly.edu
Last Revision Date: February 13, 2008

mailto:mleung@poly.edu

Table of Contents

1. Simple Perceptron for Pattern Classification

2. Application: Bipolar Logical Function: AND

3. Perceptron Learning Rule Convergence Theorem

4. Perceptron for Multi-Category Classification

5. Example of a Perceptron with Multiple Output Neurons

Section 1: Simple Perceptron for Pattern Classification 3

1. Simple Perceptron for Pattern Classification

We consider here a NN, known as the Perceptron, which is capable
of performing pattern classification into two or more categories. The
perceptron is trained using the perceptron learning rule. We will first
consider classification into two categories and then the general multi-
class classification later.

For classification into only two categories, all we need is a single
output neuron. Here we will use bipolar neurons. The simplest archi-
tecture that could do the job consists of a layer of N input neurons,
an output layer with a single output neuron, and no hidden layers.
This is the same architecture as we saw before for Hebb learning.

However, we will use a different transfer function here for the out-
put neuron:

fθ(x) =


+1, if x > θ,

0, if − θ ≤ x ≤ θ,
−1, if x < −θ.

This transfer function has an undecided band of width 2θ. The value

Toc JJ II J I Back J Doc Doc I

Section 1: Simple Perceptron for Pattern Classification 4

X1

X2

Xn

Y

x1

x2

xn

y

w1

w2

wn

Figure 1: A feedforward NN having 1 output neuron.

Toc JJ II J I Back J Doc Doc I

Section 1: Simple Perceptron for Pattern Classification 5

of θ is held fixed at a relatively small value. The undecided case has
an output of 0, exactly half way between 1 and −1.

Thus if we represent the N components of the input vector by x,
the N components of the weight vector by w, and the bias by b, the
output is then given by

y = fθ(x ·w + b).

Notice that because of the form of the transfer function, the threshold,
θ, can no longer be absorbed by the bias, b. However we can still
introduce a fictitious input neuron X0 whose activation is always given
by x0 = 1 and its connecting weight w0 with the output neuron Y is
defined to be b.

The final question is how are we going to find the set of weights
and bias to solve a given problem? For this purpose we will be using
the Perceptron learning rule. Just like Hebb’s rule, the Perceptron
learning rule is also a supervised learning rule. Thus we assume that
we are given a training set:

{s(q), t(q)}, q = 1, 2, . . . , Q.

Toc JJ II J I Back J Doc Doc I

Section 1: Simple Perceptron for Pattern Classification 6

where s(q) is a training vector, and t(q) is its corresponding targeted
output value.

Toc JJ II J I Back J Doc Doc I

Section 1: Simple Perceptron for Pattern Classification 7

The Perceptron rule is:
1. Set learning rate α(> 0) and threshold θ. Initialize

weights and bias to zero (or some random values).

2. Repeat the following steps, while cycling through the
training set q = 1, 2, . . . , Q, until all training pat-
terns are classified correctly
(a) Set activations for input vector x = s(q).
(b) Compute total input for the output neuron:

yin = x ·w + b

(c) Compute the output

y = fθ(yin).

(d) Update the weights and bias only if that pattern
is misclassified

wnew = wold + αt(q)x,

bnew = bold + αt(q).

Toc JJ II J I Back J Doc Doc I

Section 2: Application: Bipolar Logical Function: AND 8

Notice that when a training vector is presented to the NN and the
output agrees with the targeted value, then there is no change to the
weights and bias. There is a common saying: when things are working
don’t change them. Also notice that by the design of the algorithm,
the NN always correctly classify all the training vectors using the
weights and bias obtained from the algorithm. We will consider later
a theorem that guarantees the convergence of the Perceptron learning
algorithm.

2. Application: Bipolar Logical Function: AND

The training set is given by the following table:

q s(q) t(q)

1 [1 1] 1
2 [1 -1] -1
3 [-1 1] -1
4 [-1 -1] -1

We assume that the weights and bias are initially zero, and the
threshold is 0.2 We choose a learning rate α = 1. We obtain the

Toc JJ II J I Back J Doc Doc I

Section 2: Application: Bipolar Logical Function: AND 9

following results by applying the Perceptron learning rule.

step s(q) yin y t(q) ∆w ∆b w b
1 [1 1] 0 0 1 [1 1] 1 [1 1] 1
2 [1 -1] 1 1 -1 [-1 1] -1 [0 2] 0
3 [-1 1] 2 1 -1 [1 -1] -1 [1 1] -1
4 [-1 -1] -3 -1 -1 [0 0] 0 [1 1] -1
5 [1 1] 1 1 1 [0 0] 0 [1 1] -1
6 [1 -1] -1 -1 -1 [0 0] 0 [1 1] -1
7 [-1 1] -1 -1 -1 [0 0] 0 [1 1] -1

Notice that in step 4 of the loop, the weights and bias do not
change. However we still have to present the other 3 training vectors
to the NN to make sure that they are also classified correctly and no
changes in the weights and bias need to be made. After step 7, it
is clear that the situation will repeat itself in groups of 4, and thus
we can exit the loop. Therefore in general the loop in the Perceptron
algorithm should be stopped when the weights and bias do not change
for Q consecutive times.

The resulting set of weights, w = [1 1], and bias, b = −1, gives

Toc JJ II J I Back J Doc Doc I

Section 2: Application: Bipolar Logical Function: AND 10

the decision boundary determined by

x1w1 + x2w2 = x1 + x2 = 1.

This boundary is a straight line given by

x2 = 1− x1,

which has a slope of −1 and passes through the point [1 0]. This is
the best decision boundary for this problem in terms of robustness
(the training vectors are farthest from the decision boundary). Thus
in this example, the Perceptron learning algorithm converges to a set
of weights and bias that is the best choice for this NN.

However this is all quite fortuitous. In general we cannot expect
the Perceptron learning algorithm to converge to a set of weights and
bias that is the best choice for any given NN. It is easy to see that
because if we had assumed some none zero values for the initial weights
or bias, in all likelihood we would not have gotten the best decision
boundary for this problem.

Toc JJ II J I Back J Doc Doc I

Section 2: Application: Bipolar Logical Function: AND 11

x1

x2

W
+

-

-

-

1-1

1

-1

Figure 2: The Perceptron rule finds the best decision boundary for
the case of the AND function if the initial weights and bias were chosen
to be zero.

Toc JJ II J I Back J Doc Doc I

Section 3: Perceptron Learning Rule Convergence Theorem 12

3. Perceptron Learning Rule Convergence Theorem

To consider the convergence theorem for the Perceptron Learning
Rule, it is convenient to absorb the bias by introducing an extra input
neuron, X0, whose signal is always fixed to be unity.

Convergence Theorem for the Perceptron Learning Rule:
For a Perceptron, if there is a correct weight vector w∗

that gives correct response for all training patterns, that
is

fθ(s(q) ·w∗) = t(q), ∀q = 1, . . . , Q,

then for any starting weight vector w, the Perceptron
learning rule will converge in a finite number of steps to a
correct weight vector.

According to the theorem, a table like the one given above for the
NN functioning as an AND gate, must terminate after a finite number
of steps. Note that the vectors appearing in the second column are
all chosen from the training set. The same vector may appear more

Toc JJ II J I Back J Doc Doc I

Section 3: Perceptron Learning Rule Convergence Theorem 13

that once in that column. First we can ignore from that column those
vectors that are classified correctly at the particular point in the loop,
since they lead to no changes in the weights or the bias. Next, We
consider those vectors in that column, say s(q). whose target output
is t(q) = −1. This means that we want s(q) · w < −θ so that the
output y = −1. If we multiply this inequality by minus one, we have
−s(q) ·w > θ. We can reverse the signs of all these vectors so that we
want their target output to be +1.

We denote the list of these vectors by F . The individual vectors
are denoted by x(k), so that

F = {x(0),x(1), . . . ,x(n), . . .}.
Out goal is to prove that this list must terminate after a finite number
of steps, and therefore contains only a finite number of vectors. By
design, all these vectors have target outputs of +1, and they are all
incorrectly classified at their own step in the loop.

The initial weight is w(0), and at step n (not counting those steps
where the training vectors presented to the NN are classified correctly)
the weight vector is w(n). Therefore for any n, x(n) is misclassified

Toc JJ II J I Back J Doc Doc I

Section 3: Perceptron Learning Rule Convergence Theorem 14

by definition and therefore we always have x(n) ·w(n) < 0.
We let w∗ be a correct weight vector assuming that there is such

a vector. Then by the fact that w∗ gives a decision boundary that
correctly classifies all the training vectors in F , we have

x(n) ·w∗ > 0, ∀x(n) ∈ F .
We need to define the following two quantities to be used in the proof:

m = min
x(n)∈F

x(n) ·w∗,

M = max
x(n)∈F

‖x(n)‖2.

Notice that both quantities are strictly positive.
Now we want to prove that the number of steps in the Perceptron

learning rule is always finite provided that w∗ exists.
For this proof, we assume that θ = 0.
The first step in the loop of the Perceptron learning rule gives

w(1) = w(0) + αx(0),

Toc JJ II J I Back J Doc Doc I

Section 3: Perceptron Learning Rule Convergence Theorem 15

and the second step gives

w(2) = w(1) + αx(1) = w(0) + αx(0) + αx(1).

Thus after k steps, we have

w(k) = w(0) + α

k−1∑
n=0

x(n).

We take the dot-product of this equation with w∗ to give

w(k) ·w∗ = w(0) ·w∗ + α

k−1∑
n=0

x(n) ·w∗.

But by the definition of m, we have x(n) ·w∗ ≥ m for any n. So we
have the inequality

w(k) ·w∗ > w(0) ·w∗ + α

k−1∑
n=0

m = w(0) ·w∗ + αkm.

Notice that in the above relation, equality is not possible because
there is at least one vector x(p) in the sum such that x(p) ·w∗ > m.

Toc JJ II J I Back J Doc Doc I

Section 3: Perceptron Learning Rule Convergence Theorem 16

Next, we make use of the Cauchy-Schwartz inequality:

‖a‖2‖b‖2 ≥ (a · b)2

for any vectors a and b. Therefore

‖a‖2 ≥ (a · b)2

‖b‖2
,

for any nonzero vector b. Identifying a as w(k) and b as w∗ yields

‖w(k)‖2 ≥ (w(k) ·w∗)2

‖w∗‖2
>

(w(0) ·w∗ + αkm)2

‖w∗‖2
.

Thus the square of the length of the weight vector at the k-th step,
w(k), grows faster than (αkm)2 (quadratic in k) for large k. The
right-hand side of the inequality provides a lower bound for ‖w(k)‖2.
Note that w∗ clearly cannot be a zero vector.

What we want next is to find an upper bound for ‖w(k)‖2. Since
w(k) is given by

w(k) = w(k − 1) + αx(k − 1),

Toc JJ II J I Back J Doc Doc I

Section 3: Perceptron Learning Rule Convergence Theorem 17

taking the dot-product with itself gives

‖w(k)‖2 = ‖w(k− 1)‖2 +α2‖x(k− 1)‖2 + 2αx(k− 1) ·w(k− 1).

Since x(k−1) ·w(k−1) must be negative because x(k−1) is classified
incorrectly, the last term on the right-hand side of the above equation
can be omitted to obtain the inequality

‖w(k)‖2 < ‖w(k − 1)‖2 + α2‖x(k − 1)‖2.
Replacing k by k − 1 gives

‖w(k − 1)‖2 < ‖w(k − 2)‖2 + α2‖x(k − 2)‖2.
Using this above inequality to eliminate ‖w(k − 1)‖2 yields

‖w(k)‖2 < ‖w(k − 2)‖2 + α2‖x(k − 2)‖2 + α2‖x(k − 1)‖2.
This procedure can be iterated to give

‖w(k)‖2 < ‖w(0)‖2+α2‖x(0)‖2+. . .+α2‖x(k−2)‖2+α2‖x(k−1)‖2.
Using the definition of M , we have the inequality

‖w(k)‖2 < ‖w(0)‖2 + α2kM.

Toc JJ II J I Back J Doc Doc I

Section 3: Perceptron Learning Rule Convergence Theorem 18

This inequality gives an upper bound for the square of w(k), and
shows that it cannot grow faster than α2kM (linear in k).

Combining this upper bound with the lower bound for ‖w(k)‖2,
we have

(w(0) ·w∗ + αkm)2

‖w∗‖2
≤ ‖w(k)‖2 ≤ ‖w(0)‖2 + α2kM.

This bound is clearly valid initially when k = 0, because in that
case the bound is

(w(0) · ŵ∗)2 ≤ ‖w(0)‖2 ≤ ‖w(0)‖2.
Notice that the square of the projection of w(0) in any direction can-
not be larger than ‖w(0)‖2.

Next consider what happens as k increases. Since the lower bound
grows faster (quadratically with k) than the upper bound, which grows
only linearly with k, there must be a value of k∗ such that this con-
dition is violated for all k ≥ k∗. This means the iteration cannot
continue forever and must therefore terminate after k∗ steps.

To determine k∗, let κ be a solution of the following quadratic

Toc JJ II J I Back J Doc Doc I

Section 3: Perceptron Learning Rule Convergence Theorem 19

equation

(w(0) ·w∗ + ακm)2

‖w∗‖2
= ‖w(0)‖2 + α2κM.

We find that κ is given by

κ =
R

2
−D ±

√
R2

4
−RD + L2,

where we have defined

R =
maxx(n)∈F{x(n) · x(n)}(
minx(n)∈F{x(n) · ŵ∗}

)2 ,
D =

w(0) · ŵ∗

αminx(n)∈F{x(n) · ŵ∗}
,

L2 =
‖w(0)‖2

α2
(
minx(n)∈F{x(n) · ŵ∗}

)2 .
In these expressions, ŵ∗ is a unit vector (having unit magnitude)
pointing in the direction of w∗.

Toc JJ II J I Back J Doc Doc I

Section 3: Perceptron Learning Rule Convergence Theorem 20

We want to show that only the upper sign leads to acceptable
solution. First we assume that R

2 −D is positive. Clearly the upper
sign will give a positive κ as required. The lower sign will lead to an
unacceptable negative κ. We can prove that by showing that

R

2
−D <

√
R2

4
−RD + L2.

Since both sides of this inequality are positive, we can square both
sides to give(

R

2
−D

)2

=
R2

4
−RD +D2 <

R2

4
−RD + L2.

This relation becomesD2 < L2 or equivalently
(
w(0) · ŵ∗

)2
< ‖w(0)‖2.

This final relation is obviously true because the square of the projec-
tion of any vector in any direction cannot be larger than the magnitude
square of the vector itself.

Next we assume that R
2 −D is negative. Then the lower sign will

always give a negative κ. On the other hand, the upper sign will

Toc JJ II J I Back J Doc Doc I

Section 4: Perceptron for Multi-Category Classification 21

always give an acceptable positive κ because√
R2

4
−RD + L2 > −

(
R

2
−D

)
,

as can be seen by squaring both sides.
Our conclusion is that k∗ is given by dκe where

κ =
R

2
−D +

√
R2

4
−RD + L2.

If the weight vector is initialized to zero, then D = L = 0 and
therefore k∗ = dκe = dRe. From the definition of R, we see that
the number of iteration is determined by the training vector that lie
closest to the decision boundary. The smaller that distance is the
higher the number of iterations has to be for convergence.

4. Perceptron for Multi-Category Classification

We will now extend to the case where a NN has to be able to classify
input vectors, each having N components, into more than 2 categories.

Toc JJ II J I Back J Doc Doc I

Section 4: Perceptron for Multi-Category Classification 22

We will continue to use only bipolar neurons whose transfer functions
are given by

fθ(x) =


+1, if x > θ,

0, if − θ ≤ x ≤ θ,
−1, if x < −θ.

Clearly the NN now needs to have multiple neurons, Y1, Y2, . . . , YM ,
in the output layer. The number of output neurons is specified by M .
Each input neuron is connected to each of these output neuron with
a weight factor. The weight associated with the connection between
input neuron Xi with output neuron Yj is denoted by wij . The figure
shows a diagram of this NN.

What was the weight vector now becomes the weight matrix hav-
ing two separate indices: i goes from 1 to N , and j goes from 1 to
M . The weight matrix, W, is in general a rectangular one, unless it
happens that N=M . We follow common mathematical convention to
use boldface capital letters to denote matrices. The total number of
these weight components is given by NM .

Toc JJ II J I Back J Doc Doc I

Section 4: Perceptron for Multi-Category Classification 23

X1

X2

Xn

Y1

Y2

Ym

x1

x2

xn

y1

y2

ym

w11

w12

w13

w21

w22

w23

w31
w32

w33

Figure 3: A single-layer feedforward NN having multiple output neu-
rons.

Toc JJ II J I Back J Doc Doc I

Section 4: Perceptron for Multi-Category Classification 24

Each output neuron also has its own bias, denoted by bj , where
j = 1, . . . ,M . Thus the total input into neuron Yj is

yin,j = bj +
N∑
i=1

xiwij .

As before we can absorb a bias by introducing an extra input neuron,
X0, so that the weight connecting it to Yj is w0j = bj , provided that
the signal in X0 is always fixed to be x0 = 1. Then the total input
into neuron Yj can be rewritten as

yin,j =
N∑
i=0

xiwij .

The output of neuron Yj is then given by

yj = fθ(yin,j)

We need to be able to train this NN using a more general form of
the Perceptron learning rule. To train the NN, we assume that we are

Toc JJ II J I Back J Doc Doc I

Section 4: Perceptron for Multi-Category Classification 25

given a training set:

{s(q), t(q)}, q = 1, 2, . . . , Q.

where s(q) is a training vector, each having N components, and t(q)

is an M-component vector, representing the corresponding targeted
output values. Notice that the target is no longer a scalar quantity.
Since each component of the output can take on two different values,
a NN with M output neuron is capable of classifying input vectors
into 2M categories (under practical situation where N �M)[2].

Toc JJ II J I Back J Doc Doc I

Section 4: Perceptron for Multi-Category Classification 26

The general Perceptron rule is:
1. Set α(> 0) and θ. Initialize W and b.

2. Repeat steps, while cycling through training set, un-
til all training patterns are classified correctly

(a) Set input vector xi = s
(q)
i , i = 1, . . . , N .

(b) Compute total input for each output neuron:

yin,j =
N∑
i=1

xiwij + bj , j = 1, . . . ,M.

(c) Compute the output

yj = fθ(yin,j), j = 1, . . . ,M.

(d) Update W and b only if pattern is misclassified

wnew
ij = wold

ij + αxit
(q)
j ,

bnew
j = bold

j + αt
(q)
j .

Toc JJ II J I Back J Doc Doc I

Section 4: Perceptron for Multi-Category Classification 27

For θ = 0, there is a total of M decision hyperplanes determined
by

N∑
i=1

xiwij + bj =
N∑
i=0

xiwij = 0, j = 1, . . . ,M

and for N ≥ M these hyperplanes divide the N dimensional input
space into 2M distinct regions. Thus each column of the weight ma-
trix, W, gives the weight vector that determines the normal direc-
tion of each of the M hyperplanes. If we do not absorb the biases
by introducing a zeroth neuron, then we can define weight vectors
wj = [w1jw2j . . . wNj] so that the equation for the j-th hyperplane
can be written as

x · ŵj =
−bj
‖wj‖

.

However, if we absorb the biases by introducing a zeroth neuron, then
we can define weight vectors wj = [w0jw1jw2j . . . wNj] so that the
equation for the j-th hyperplane can be written as

x · ŵj = 0.
Toc JJ II J I Back J Doc Doc I

Section 4: Perceptron for Multi-Category Classification 28

For finite value of θ, these hyperplanes become slabs of width 2d,
where the value of d will be determined below. Each slab divides the
input vector space into three regions:

N∑
i=1

xiwij + bj > θ ⇒ y = +1,

−θ ≤
N∑
i=1

xiwij + bj ≤ θ ⇒ y = 0,

N∑
i=1

xiwij + bj < −θ ⇒ y = −1.

The slab is bounded on each side by hyperplanes determined by

x · ŵj =
−bj + θ

‖wj‖
,

x · ŵj =
−bj − θ
‖wj‖

,

Toc JJ II J I Back J Doc Doc I

Section 4: Perceptron for Multi-Category Classification 29

where the weight vectors are defined by wj = [w1jw2j . . . wNj]. There-
fore the slab has a thickness 2dj , where

dj =
θ

‖wj‖
.

However, if we absorb the biases by introducing a zeroth neuron, then
the slab is bounded on each side by hyperplanes determined by

x · ŵj =
θ

‖wj‖
,

x · ŵj =
−θ
‖wj‖

,

where the weight vectors are now defined by wj = [w0jw1jw2j . . . wNj].
Therefore the slab has a thickness 2dj , where

dj =
θ

‖wj‖
.

Although this expression for dj looks identical to the one above, the
weight vectors are defined slightly differently, and the slab is located

Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 30

Wj

/|Wj|

/|Wj|
x1

x2

Figure 4: A hyperplane with a safety margin.

in an input vector space one higher than the one before. The figure
shows one of the hyperplanes with a safety margin.

5. Example of a Perceptron with Multiple Output Neurons

We consider the following Perceptron with multiple output units. We
want to design a NN, using bipolar neurons, and train it using the

Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 31

Perceptron learning rule with the following training set:

(class 1)

s(1) =
[

1 1
]
, s(2) =

[
1 2

]
with t(1) = t(2) =

[
−1 −1

]
(class 2)

s(3) =
[

2 −1
]
, s(4) =

[
2 0

]
with t(3) = t(4) =

[
−1 1

]
(class 3)

s(5) =
[
−1 2

]
, s(6) =

[
−2 1

]
with t(5) = t(6) =

[
1 −1

]
(class 4)

s(7) =
[
−1 −1

]
, s(8) =

[
−2 −2

]
with t(7) = t(8) =

[
1 1

]
It is clear from the training set that N = 2, Q = 8, and the number
of classes is 4. The number of output neuron is chosen to be M = 2
so that each target vector has 2 components, each of which taking on
2 possible values, and so 2M = 4 classes can be represented. (Note
that M 6> N here.)

Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 32

Setting α = 1 and θ = 0, and assuming zero initial weights and
biases, we find that the Perceptron algorithm converges after 11 iter-
ations (a little more than 1 epoch through the training set) to give

W =
[
−3 1

0 −2

]
, b =

[
−2 0

]
.

The 2 decision boundaries are given by the equations

−3x1 − 2 = 0, x1 − 2x2 = 0,

which correspond to the following 2 straight lines through the origin

x1 = −2
3
, x2 =

1
2
x1.

These 2 lines separate the input vector space into 4 regions and it is
easy to see that the NN correctly classifies the 8 training vectors into
4 classes. However these boundaries are not the most robust against
random fluctuations in the components of the input vectors.

Here we have chosen a threshold θ = 0. One expects that for a
larger value of θ, a more robust set of decision slabs can be obtained.
Experimentation by keeping α = 1 but using larger values of θ shows

Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 33

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

Decision hyperplanes for θ = 0

x
1

x 2

Figure 5: A Perceptron capable of classifying patterns into 4 classes.

Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 34

that exactly the same number of iterations, the same sequence of
weight matrices and bias vectors are obtained as long as θ < 1. This
is due to the fact that no training vector falls within the the decision
slabs during training if θ < 1.

For α = 1 and 1 ≥ θ < 2, the Perceptron algorithm converges in
15 iterations to give

W =
[
−5 1

1 −5

]
, b =

[
0 0

]
.

For α = 1 and 2 ≥ θ < 3, the Perceptron algorithm converges in 17
iterations to give

W =
[
−8 2

0 −6

]
, b =

[
−2 0

]
.

With increasing values of θ, the number of iterations required for
convergence becomes higher, and the lengths of the weight vectors
become longer (not too surprising from the proof of the Perceptron
convergence theorem, although it was strictly for θ = 0). The resulting
decision boundaries become more and more robust.

Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 35

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

Decision hyperplanes for θ = 1.1

x
1

x 2

Figure 6: A Perceptron capable of classifying patterns into 4 classes.

Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 36

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

Decision hyperplanes for θ = 2.1

x
1

x 2

Figure 7: A Perceptron capable of classifying patterns into 4 classes.

Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 37

Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 38

References

[1] See Chapter 2 in Laurene Fausett, ”Fundamentals of Neural Net-
works - Architectures, Algorithms, and Applications”, Prentice
Hall, 1994.

[2] In the case of pattern classification, the number of categories, M ,
is not a very large number under practical circumstances, but the
number of of input vectors components, N , is usually large, and
therefore we expect N � M . It is obvious that the number of
training vectors, Q, must be larger than M , otherwise we cannot
expect the NN to be able to learn anything. (We clearly need at
least one training vector for each class.)
In many examples and homework problems, N , M and Q, are
usually not very large, especially when we want to go through
algorithms and analyze results analytically by hand. We have to
be careful and make sure we don’t draw wrong conclusions because
of the smallness of N , M and Q. 25
For example, in a NN where N < M , the number of possible
output categories is not 2M for binary or bipolar output neurons,
Toc JJ II J I Back J Doc Doc I

Section 5: Example of a Perceptron with Multiple Output Neurons 39

but is substantially smaller. To illustrate, let us take N = 2 and
M = 3. Thus we have 3 straight lines representing the 3 decision
boundaries in N = 2 dimension space. A single line divides the
two-dimensional plane into 2 regions. A second line not parallel
with the first line will cut the first line and divide the space into
4 regions. A third line not parallel with the first 2 lines will cut
each of them at one place thus creating 3 more regions. Thus the
total number of separated regions is 7 not 23 = 8. However if N is
equal to or larger than M , then the M decision boundaries, each
of which is a hyperplane, indeed divide the N dimensional space
into 2M regions. For example, the three coordinate planes divide
the three dimensional space into 8 quadrants.

Toc JJ II J I Back J Doc Doc I

	Table of Contents
	1 Simple Perceptron for Pattern Classification
	2 Application: Bipolar Logical Function: AND
	3 Perceptron Learning Rule Convergence Theorem
	4 Perceptron for Multi-Category Classification
	5 Example of a Perceptron with Multiple Output Neurons

