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1. Introduction

Two dimensional cellular automata have a relatively ancient history,
from the self-reproducing automata of von Neumann and Ulam in
1948 to the ”Game of Life” of Conway in 1960. These systems have
proved to be valuable modeling tools in the fields of crystal growth,
physical chemistry and hydrodynamics. Machines designed for spe-
cific computations have also been built. They are known as systolic
arrays and are used for matrix computations, especially parallel ma-
trix multiplications.

We will not discuss von Neumann’s self-reproducing automaton
since it is rather complex. It is an automaton that has 29 states,
and the builder configuration contains 200,000 automata in the non-
quiescent state. We will discuss instead three other two dimensional
cellular automata which involve only boolean automata, simple neigh-
borhoods and transition rules. The first one is used in simulating
crystal growth, the second one simulates dendritic growth of crystals
in solutions, and the last one is Conway’s famous ” Game of Life”.

Common two dimensional lattices include the square, triangular
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and hexagonal lattices. The last two lattices are some times chosen for
their better isotropy properties in the simulation of hydrodynamical
systems. In the case of the square lattice, the most popular neigh-
borhoods are the von Neumann neighborhood and the Moore neigh-
borhood. In the von Neumann neighborhood each automaton has 5
inputs, consisting of itself and its 4 nearest neighbors. The Moore
neighborhood has 9 inputs, consisting of itself and its 8 nearest neigh-
bors. We will have a chance to use both them here.
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2. Counter and Growth Cellular Automata

Suppose we want to grow a larger crystal by exposing a small piece
of the crystal in a vapor of the same atoms. We want the atoms from
the vapor to condense onto the surface of the crystal, thus building
it up layer by layer. There are many controlling parameters in the
growth process that influence the deposition rate. The temperature
of the crystal which serves as a substrate for the condensation process
is a very important controlling parameter.

To simulate such a process, we consider here a counter cellular
automata whose transition rule depends only on the sum of the states
of the automata in the neighborhood, S and a given fixed threshold
value, T. Boolean automata are used. We identify automata’s in
state 1 as sites where an atom from the vapor sticks on the surface of
the crystal. Lattice sites where the automata are in state 0 mark the
locations where there is no crystal growth. The threshold T plays the
role of the temperature of the crystal. The larger T is , the higher is
the temperature. When the temperature is low, atoms in the vapor
like to stick to the crystalline surface and stick to each other on the
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surface. One the other hand when the temperature is high, the atoms
dissociate from the surface.

In the simulation, the threshold value is chosen to be either a real
number or an integer between —1 and k + 1, where k is the input
connectivity of the automata. For any given automaton, the sum
of the states in its neighborhood (including itself) is evaluated and
compared to the threshold. The new state of the automaton is set to
1 if this sum is greater than or equal to the threshold, otherwise it is
set to 0. Weak thresholds (negative or close to 0) favor the growth of
clusters of automata in state 1, whereas strong threshold (close to k)
favor the growth of clusters of automata in state 0.

To illustrate this phenomena, we follow the evolution of the dy-
namical behavior of a counter cellular automaton as the threshold
is increased. A square lattice with the von Neumann neighborhood
(k =5) and a real threshold are used.

For negative thresholds, since the sum of the states in the neigh-
borhood of any automaton cannot be negative, and so the sum is
always larger than the threshold. Therefore in a single time step, the
entire population of automata will be in state 1 no matter what the
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initial configuration is. Crystal growth occurs at an incredible pace.

Next consider what happens if the threshold is increased so that
it is positive but less than or equal to 1, that is 0 < T' < 1. There are
only two possibilities, either the sum 5, of the states in an automaton’s
neighborhood, is 0 or S > 1. If S = 0, meaning that the automaton as
well as it nearest neighbors are all currently in states 0, then S < T', so
the automaton will remain in state 0 the next time step. On the other
hand, if S > 1, then S > T and so the automaton will be in state
1 if it is not already. An automaton can have S > 1 because of two
reasons. (1) It is in state 1 and at the same time some of its neighbors
may also be in state 1, then it will remain in states 1, meaning that
an atom already deposited on the crystal surface will remain stuck
there. (2) It is in state 0 but one or more of its neighbors are in state
1, in that case it will switch to state 1 the next time step, meaning
that a new atom is deposited. These neighboring state 1 automata
act like seeds for the deposition of this new atom. Notice that at least
one seed must be found in the neighborhood of an empty site in order
for an atom to be deposited there.

The most interesting case is 1 < T < 2. First we assume that
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S = 0, which implies that S < T and the automaton as well as all its
neighbors are in state 0, and so the automata will remain at state 0.
Therefore an empty site with no seed in its neighborhood will remain
empty. Next we assume that S = 1 and so S < T and therefore the
state in the next time step is 0. In order that S = 1, an empty site
must have a single seed in its neighborhood. But an empty site will
remain empty. Thus the presence of a single seed is not enough to
cause another atom to be deposited near it. Growth cannot occur even
at the edge of a line of atoms. If the automaton is in state 1, then it
must be an isolated atom (since we assume that S = 1). According to
the rule, it will switch to state 0. Thus an isolated atom will dissociate
from the crystal back into the vapor. Finally we assume that S > 2,
and so S > T'. In this case, the automata will switch to state 1 if not
already in state 1. If the automaton is in state 0, then it must have
2 or more of its neighbors in state 1. Therefore crystal grows only at
a facet or between 2 atoms. If the automaton is in state 1, then it
must have one or more of it neighbors in state 1 also. Thus a cluster
of atom will remain at the surface.

The situation is shown in the following figure. Notice that an
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isolated atom dissociates, a line of atoms is stable, a diagonal pair of
atoms oscillates with a period of 2. The triplet evolves in one iteration
to a stable square with 4 automata.

Notice that in displaying the states of the automata, instead of
putting the automata at the nodes of the two dimensional grid, we
can put them inside the squares formed by the grid. The two different
ways of presenting the data are totally equivalent since the grid lines
serve only as an aide to the eye, and in fact the lines are sometimes
not even displayed.

t=0 t=1 t=2 t=3

The two figures depict the deposition of atoms at the facets of
two different crystallites when 1 < T' < 2. The first surface has very
few atoms on the top layer initially and the surface can only be cov-
ered partially by atoms (creating an atomically rough surface). The
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second surface has sufficiently high initial coverage and is eventually
completely covered by a layer of atoms forming an atomically smooth
surface.t_o =1

@
For a threshold between 2 and 3, there is no growth even at a
facet, which is instead stripped of its isolated atoms. For even larger
thresholds, the roles of the 0’s and 1’s are reversed, and we observe
the growth of the 0’s in the opposite order.

For other neighborhoods and other lattices, we see similar behav-
iors, but not necessarily at the same thresholds. The shapes of the
crystal deposited are also different. Instead of square crystals, we will
see diamond- or hexagonal-shaped crystals.
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3. Window Automata and Dendritic Growth

A crystal, such as a snowflake, grown from a seed in solution can de-
velop lacy dendritic shapes. This type of crystalline growth occurs
when the seed is much colder than the surrounding solution. The
heat dissipated by the crystallization process leads to the growth of
dendrites which spread out into the solution to find colder zones of
the liquid. This type of growth can be modelled by the use of ”win-
dow” cellular automata. The need to dissipate the heat generated by
crystallization is handled by not allowing an automaton to change to
state 1 if the number of its neighbors in state 1 is too large. The
growth process of course requires the presence of a seed, and so a
transition to state 1 cannot occur if the number of neighbor in state
1 is too small. The combination of these two tendencies means that a
state 0 automaton can change its state to 1 only if the number of its
neighbors in state 1 is neither too large or too small.

Assuming the von Neumann neighborhood, the following transi-
tion rule will result in interesting dendritic growth patterns:

1. An automaton in state 1 will always stay in state 1.
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2. An automaton in state 0 changes to state 1 only if exactly one
of its neighbor is in state 1.

H B EEENENENSENESEE ..
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4. The Game of Life

The Game of Life is a rather simple two dimensional cellular automa-
ton which exhibits rather diverse dynamical behaviors depending on
the initial configurations. It is an example of a universal computing
machine. That is, if we set up an initial configuration of life cells to
represent any possible program and any set of input data, run the
Game of Life, and in some region of the lattice the output data will
appear. The proof of this result involves showing how various con-
figurations of cells represent the components of a computer including
wires, storage, and the fundamental components of a CPU - the digital
logic gates that perform AND, OR and other logical and arithmetic
operations.

The cellular automaton uses a square lattice and a Moore neigh-
borhood with 9 inputs. An automaton is considered alive if it is in
state 1, otherwise it is considered dead. The transition rules are as
follows:

1. An automaton in state 0 switches to state 1 (it comes alive) if
3 of its neighbors are in state 1, otherwise it stays in state 0.
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2. An automaton in state 1 remains in state 1 if 2 or 3 of its
neighbors are in state 1. Having 2 or 3 of its neighbors alive
is supposed to be an appropriate living environment for an au-
tomaton, and it remains alive as a result. It switches to state 0
in any other environments. That is an automaton dies if it has
1 or less living neighbor (because of loneliness) or if it has 4 or
more living neighbors (because of over-crowding).

If the state of an automaton at time ¢ is given by a boolean identi-
fier s, and the sum of the states of its nearest neighbors is given by an
integer identifier n, then the state at time ¢ + 1 can be conveniently
computed as (s&&(n==2)) || (n==3)) in C or C++.

The following figures show some interesting configurations, assum-
ing that they are isolated from other state 1 automata.

1. The first two configurations evolve rapidly toward simple attrac-
tors, called the block and the bee-hive, that are fixed points of
the dynamics.
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2. The third configuration gives an attractor configuration called
the blinker that is a limit cycle of period 2.
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3. The fourth configuration is very remarkable. After 4 iterations,
it returns to its original form except that it has undergone a
translation down the diagonal of the lattice. The attractor is
called the glider. Clearly there are 4 types of gliders, each prop-
agates either up or down and to the left or to the right, along
the two diagonals of the lattice.

t=0 t=1 t=2 t=3 t=4

The glider is a basic component in the construction of a cellu-
lar computer. The Game of Life is actually equivalent to a Turing
machine (a Universal computer). To build such a machine, one has
to know how to construct 2 logic functions, including negation. The
cellular computer is composed of the following components:

1. Gliders which act like binary signals that propagate down the
diagonals of the lattice. The presents of a glider is interpreted
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as the signal 1 and its absence 0.

2. The glider gun configurations that ejects gliders at regular time
intervals. They allow the access to a signal in state 1.

3. The collision of 2 gliders destroys them both.

Even after the article by Martin Gardner about Conway’s Game of
Life that appeared more than 30 years ago in the Mathematical Games
column of the October 1970 issue of Scientific American, the topic still
attracts a tremendous interest among groups of non-professionals and
professionals world wide. The Game of Life has very rich dynamical
properties. New patterns are continuously being discovered. Many
new questions are still being asked, and new discoveries are still being
made. In particular, Paul Rendell reported recently the creation of
a Universal Turing Machine with 3 states and 3 symbols. Any one
interested should visit his http://hensel.lifepatterns.net/ website for
details. In general in order to stay informed of the latest developments
on this topic, the web often provides the best source of information.
You may want to search related sites using google for example.
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