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1. Introduction

A complex system is a system composed of a large number of different
highly connected interacting elements. The majority of natural and
artificial systems are of a complex nature. Some examples are:

1. The human brain is composed of approximately 10 billion cells,
called neurons. These cells interact by means of electro-chemical
signals through their synapses.

2. Computer systems use large number of different electronic com-
ponents at the level of transistors and logic gates.

3. Many multi-phase and composite materials

4. Social, economical and financial systems.

The interest is in the time evolution (dynamics) of such systems
which often show highly non-trivial and complex behaviors. In sci-
ence, we believe that the underlying laws describing these complex
systems must be rather simple. One of the greatest challenges is to
understand how these complex behaviors can result from simple laws.
Important insights can be obtained by studying automata networks.
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The approach of automata networks is to represent the system
by a network of interacting elements. Each element is referred to
as an automaton. All relevant quantities are modeled by discrete
variables. Each automaton in the network can only take on discrete
state values. These values change according to certain rules as time
progresses. These rules are usually very simple and yet the dynamics
of the network can be extremely intriguing. Time t is discretized so
that it takes on only integer values, t = 0, 1, . . . , n, . . .. The idea of a
discrete time of course is very natural in a computer, where the time
is controlled by an internal clock which coordinates the changes in the
states of the logic units.

The most crucial part of modeling is to identify the relevant vari-
ables to simulate, how these variables should be described, how they
interact with each other and affect the dynamics of each variables and
therefore determine the dynamics of the entire system. Approxima-
tions are often needed to reduce the problem into a form that can be
described by a network of automata. However once the problem has
the desire discrete form, the dynamics can be followed by computer
simulation exactly since all operations involve exact integer or boolean

Toc JJ II J I Back J Doc Doc I



Section 2: Formal Definition of an Automaton 5

values. So automata networks are examples of discrete dynamical sys-
tems that can be simulated exactly on a digital computer. In addition
since all variables and parameters are discrete, computations can be
carried out much faster.

In this chapter we will consider some basic definitions and prop-
erties of general automata and automata networks. A special class of
such discrete models known as cellular automata, will be considered
in more detail in the next chapter. They were originally introduced
by von Neumann and Ulam in 1948 as an idealistic model of biological
self-reproduction.

2. Formal Definition of an Automaton

An automaton is defined as an object having 3 discrete sets:

1. I, the set of inputs, i.

2. S, the set of internal states, s, and

3. O, the set of outputs, o,

and 2 mappings:
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1. S(i, s), the state change function, which maps the inputs and
the states at time t to a new state one time step later, i.e.
st+1 = S(it, st).

2. O(i, s), the output function, which maps the inputs and the
state at time t to the outputs one time step later.

In general there are many inputs, internal states and outputs, so
i, s and o are vectors (integer arrays).

3. An Example of an Automaton

The following pulse counter which counts the number of pulses in an
input signal within a time interval, is an example of an automaton
with 2 inputs and 4 outputs. The input vector, i, has 2 components,
i1 and i2, given by a reset and a signal. Each component is represented
by a sequence of 0 and 1.

When the reset is 1, the state at the next time step is reset to
zero. When the reset is 0, the state at the next time step is given by
the sum of the present state and the present signal. Consequently the
internal state of the automaton is given by the total number of pulses
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in the signal since the last reset was performed.
The output at time t is given by the binary representation of the

state at time t-1. It is therefore the binary representation of the num-
ber of pulses received since the last time the internal state was reset.
The output consists of 4 components each representing a bit of the
binary number. The first component represents the most significant
bit and the last component, the least significant bit.

The state mapping function can be written in the form

st+1 = (1− i1,t) ∗ (st + i2,t). (1)

For example, if the inputs are given by:

i1(0), i1(1), . . . , i1(11) = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . (2)

i2(0), i2(2), . . . , i2(11) = 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, . . . (3)
The initial value of the internal state does not really matter, it can
be either 0 or 1, since it is reset to 0 after just one time step.
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time 0 1 2 3 4 5 6 7 8 9 10 11 12 13
reset 1 0 0 0 0 0 0 0 0 0 0 0 ? ?
signal 0 0 1 0 1 0 1 1 0 1 0 0 ? ?
state * 0 0 1 1 2 2 3 4 4 5 5 5 ?
MSB * * 0 0 0 0 0 0 0 0 0 0 0 0

2nd bit * * 0 0 0 0 0 0 0 1 1 1 1 1
3rd bit * * 0 0 0 0 1 1 1 0 0 0 0 0
LSB * * 0 0 1 1 0 0 1 0 0 1 1 1

4. More Specialized Automata

We will mainly be interested on automata for which the internal state
and the output are the same. A simplified automaton is then defined
by its sets of inputs and internal states and a transition function f
which gives the output at time t + 1 as a function of the inputs and
internal state at time t. We can write the relationship as:

0t+1 = f(st), (4)
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Section 5: Boolean Automata 9

in vector notation.
Moreover, we will restrict ourselves to binary automata, where the

inputs and internal states have only 2 possible values, 0 or 1.
There are 2 types of automata classified according to the type of

transition functions used.

1. Boolean automata have transition functions given by boolean
logic functions.

2. Threshold automata use the Heaviside unit function containing
weights and threshold as the transition function. This type of
automata is used mostly for neural networks.

5. Boolean Automata

Boolean automata have transition functions specified by boolean func-
tions that operate on boolean variables and output boolean values.
Boolean variables can take on only 2 possible values: true or false.
Internally the value of true is represented by 1 and the value of false
is represented by 0.
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The number of inputs, k, specifies the connectivity of the au-
tomata. For a given k, the total number of possible input patterns is
2k. Each of these input has 2 possible output values. Therefore the
total number of different truth table is 22k

, each specifying a different
automaton. Examples of boolean transition functions with 2 boolean
input variables are the logic functions AND, OR and XOR. These
transition functions are usually defined by a truth table giving the
output for every input combinations. For example the truth table for
the AND logic function is

input 00 01 10 11
output 0 0 0 1

For example if an automaton has connectivity of k = 2, then there
are a total of 222

= 16 different boolean automata. The transition
function can be conveniently described by the decimal representation
of the output bits. The convention is that the leftmost value corre-
sponds to the automaton with the highest number, just as in decimal
notation where the leftmost digit represents the highest power of 10.

Toc JJ II J I Back J Doc Doc I



Section 5: Boolean Automata 11

The sixteen boolean automata with 2 inputs are defined by the
following 16 truth tables:

input 11 10 01 00 11 10 01 00
output 0 0 0 0 0 0 0 1
decimal 0 1
name Contradiction NOR

input 11 10 01 00 11 10 01 00
output 0 0 1 0 0 0 1 1
decimal 2 3
name Inverse 2

input 11 10 01 00 11 10 01 00
output 0 1 0 0 0 1 0 1
decimal 4 5
name Inverse 1
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input 11 10 01 00 11 10 01 00
output 0 1 1 0 0 1 1 1
decimal 6 7
name XOR NAND

input 11 10 01 00 11 10 01 00
output 1 0 0 0 1 0 0 1
decimal 8 9
name AND EQUvalence

input 11 10 01 00 11 10 01 00
output 1 0 1 0 1 0 1 1
decimal 10 11
name Transfer 1 2 implies 1
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input 11 10 01 00 11 10 01 00
output 1 1 0 0 1 1 0 1
decimal 12 13
name Transfer 2 1 implies 2

input 11 10 01 00 11 10 01 00
output 1 1 1 0 1 1 1 1
decimal 14 15
name OR Tautology

The names of the automata are taken from mathematical logic.
The two functions numbered 0 and 15 have outputs which are inde-
pendent of their inputs. Four functions, 3, 5, 10, and 12 depend only
on one of the two inputs, which they either transmit or invert. The
functions with decimal codes 1, 4, 7, 8, 11, and 13 are referred to as
forcing functions, because when at least one of their outputs is in a
certain state, the output does not depend on the state of the other
input. For example, it suffices that one of the inputs of the AND
function be in the state 0 for the output to be 0. Finally, for the two

Toc JJ II J I Back J Doc Doc I



Section 5: Boolean Automata 14

remaining functions, 6 and 9, the output can only be determined if
both of the inputs are known.
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6. Connectivity Structures

There are 3 common connectivity structures:

1. Random Connectivity - Connectivity is randomly chosen.

2. Complete Connectivity - Every automaton is connected to every
other automaton.

3. Cellular Connectivity - Automaton are distributed on a periodic
array in 1, 2 or 3 dimensions, and the connections are between
nearest neighbors.
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7. Iteration Modes

Iteration mode refers to the precise sequence in which the states of
the automata are chosen for update during a given time step.

In a sequential iteration, automaton changes its states one after
the other in a pre-determined fashion. In the following example, the
automaton changes it state starting with automaton 1, automaton
2, etc. Mathematically this iteration mode amounts to applying the
following transition functions one following the other (in the order as
shown) within one time step:

s1(t + 1) = f1(s1(t), s2(t), . . . , sN−1(t), sN (t)) (5)
s2(t + 1) = f2(s1(t + 1), s2(t), . . . , sN−1(t), sN (t))
s3(t + 1) = f3(s1(t + 1), s2(t + 1), . . . , sN−1(t), sN (t))

. . .

sN (t + 1) = fN (s1(t + 1), s2(t + 1), . . . , sN−1(t + 1), sN (t))
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In a synchronous iteration, the states of the automata are updated
in parallel, based on their values in the previous time step. Mathemat-
ically this iteration mode amounts to applying the following transition
functions in any order within one time step:

s1(t + 1) = f1(s1(t), s2(t), . . . , sN−1(t), sN (t)) (6)
s2(t + 1) = f2(s1(t), s2(t), . . . , sN−1(t), sN (t))
s3(t + 1) = f3(s1(t), s2(t), . . . , sN−1(t), sN (t))

. . .

sN (t + 1) = fN (s1(t), s2(t), . . . , sN−1(t), sN (t))

8. Automata Networks

An automata network is composed of a set of automata interconnected
in such a way that the output of some are the inputs of others. It is
therefore a directed graph where the nodes are the automata and the
edges are the connections from the output of one automaton to the
input of another.
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1
XOR

2
EQU

3
AND

4
EQU

5
XOR

Figure 1: A closed network consisting 5 boolean automata. Each
automaton has 2 inputs and performs a logical function as shown.
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We consider here a closed automata network, that is it has no
external connections. An example of such a network is shown in the
figure. It is composed of 5 boolean automata each having 2 inputs.
This network is equivalent to the following set of 5 logical relations:

s1(t + 1) = XOR(s2(t), s3(t)) (7)
s2(t + 1) = EQU(s3(t), s4(t))
s3(t + 1) = AND(s4(t), s5(t))
s4(t + 1) = EQU(s5(t), s1(t))
s5(t + 1) = XOR(s1(t), s2(t))

if we adopt a parallel iteration mode. Suppose the initial configuration
of the automata network is given by 00000 (again the leftmost bit
corresponds to the automaton with the highest number). The states
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after one time step are given by

s1(t + 1) = XOR(0, 0) = 0 (8)
s2(t + 1) = EQU(0, 0) = 1
s3(t + 1) = AND(0, 0) = 0
s4(t + 1) = EQU(0, 0) = 1
s5(t + 1) = XOR(0, 0) = 0

So the network has configuration 01010. Notice that implementing
the parallel iteration mode on a serial computer requires the use of
2 sets of state variables, one set to store the old values and another
for the new values. At each time step, the old values are used to
update the new values, and then the old values are replaced by the
corresponding new ones.

On the other hand if we adopt a sequential iteration mode instead,
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then the states after one time step are given by

s1(t + 1) = XOR(0, 0) = 0 (9)
s2(t + 1) = EQU(0, 0) = 1
s3(t + 1) = AND(0, 0) = 0
s4(t + 1) = EQU(0, 0) = 1
s5(t + 1) = XOR(0, 1) = 1

Therefore the network will end up having a different configuration:
11010 one time step later. Implementation of the sequential iteration
mode is straightforward and does not require an extra set of variables.

9. Successor Table

For a simple automata network, it is not too difficult to obtain a table
showing how each possible configuration should be updated in a time
step. Such a table is referred to as the successor table.

For our automata network consisting of 5 boolean automata, the
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total number of possible configurations is 25 = 32. So the successor
table contains 32 transition rules. Each configuration is labeled by its
decimal code. The following successor table is obtained assuming the
parallel iteration mode.
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code before code after code before code after
0 00000 10 01010 16 10000 2 00010
1 00001 18 10010 17 10001 26 11010
2 00010 27 11011 18 10010 19 10011
3 00011 3 00011 19 10011 11 01011
4 00100 9 01001 20 10100 1 00001
5 00101 17 10001 21 10101 25 11001
6 00110 24 11000 22 10110 16 10000
7 00111 0 00000 23 10111 8 01000
8 01000 8 01000 24 11000 4 00100
9 01001 16 10000 25 11001 28 11100

10 01010 25 11001 26 11010 21 10101
11 01011 1 00001 27 11011 13 01101
12 01100 11 01011 28 11100 7 00111
13 01101 19 10011 29 11101 31 11111
14 01110 26 11010 30 11110 22 10110
15 01111 2 00010 31 11111 14 01110
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10. Iteration Graphs

Since a boolean automaton has 2 possible states, a network of N
boolean automata has a total of 2N possible configurations. Each
configuration is specified by a unique combination of the state of each
automaton in the network. Starting with a given initial configuration,
the time evolution (dynamics) of the network can be followed by ap-
plying the transition rules given by the successor table to change the
states of the automata at each time step.

We can then draw a directed graph, called the iterated graph,
where the nodes label the configurations of the automata network in
decimal codes, and the directed edges indicate the transition of the
network from its configuration at a given time to the next time.

We can start with any initial configuration and follow its time
evolution. We have to be sure that all possible configurations are
visited. Because of the fully deterministic nature of the transition
rules, we stop the iteration as soon as we come to a configuration that
has been previously visited. We then choose an initial configuration
that has not yet been visited and iterate from there. The process is
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terminated once all possible configurations have been visited. For a
simple automata network, such as the one we are considering here,
the entire dynamics of the network can be found this way.

For our boolean automata network for example, we can start with
configuration 0. We then go to configurations 10, 25, 28, 7 and back
to 0 again. We can stop the iteration because we are clearly going to
go around in circles among these 5 configurations if we continue any
further. This kind of cyclic dynamic behavior is called a limit cycle.

Let us start all over again but this time with a different initial
configuration, say 1. From there we go to configurations 18, 19, 11
and back to 1. We end up in another limit cycle. But this time the
limit cycle involves only 4 different configurations.

We repeat again with a new configuration, say 2. This config-
uration goes into configurations 27, 13, and 19. We can stop the
iteration since configuration 19 has been visited previously. The re-
sults obtained in the above two steps can be combined to obtain the

Toc JJ II J I Back J Doc Doc I



Section 10: Iteration Graphs 26

following iterated graph:

2→ 27→ 13→ 19← 18 (10)
↓ ↑

11→ 1

Notice that two separate branches merge into configuration 19, one
from configuration 13, and the other from 18. However the determinis-
tic nature of the transition rules precludes the possibility of branching
out from any configuration.

It is clear that we are interested in how one configuration evolves
into another, and so the precise positioning of the configurations in a
graph is totally irrelevant. The topology of the connection pathways
is all that matters here.

Next we start with configuration 3, which we have not encountered
before. Note that according to the transition rules, configuration 3
goes into itself. Configuration 3 is referred to as a fixed point in
the dynamics of the network, since it does not change once we get
to this configuration. An inspection of the successor table reveals
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that no other configuration evolves into configuration 3. Consequently
this fixed point is called an isolated fixed point. Configuration 8 is
another fixed point of the dynamics of this network, however it is not
an isolated fixed point since configuration 23 evolves into it.

After all the configurations have been visited, we see that the iter-
ated graph consists of 4 separate sub-graphs, breaking up the config-
urations into 4 distinct groups. Each sub-graph represents a basin of
attraction because configurations within a sub-graph can only evolve
into other configurations within the same sub-graph, and can never
evolve into a configuration belonging to another sub-graph.

If the evolution of each configuration within a basin is followed, it
always ends up in some kind of infinite loop, no matter which config-
uration within the basin is chosen as the initial configuration. These
ultimate asymptotic dynamical behaviors are referred to as attractors
of the dynamic system. The lengths of these infinite loops are called
the periods of the attractors. A period-1 attractor is called a limit
point. Attractors having periods larger than 1 are called limit cycles.
The totality of configurations which converges toward an attractor
constitute a basin of attraction. There is one and only one attractor
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Figure 2: The iterated graph showing the dynamics of a closed
automata network consisting of 5 boolean automata.
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for each basin of attraction.
In this example, there are 4 basins of attraction, two have limit

points and the other two have limit cycles, of periods 4 and 5.
Clearly it is possible to construct a complete iteration graph only

for simple automata networks. For large (N � 1) networks with
complicated connectivities (k � 1), we must be content only with
describing the dynamics of the network by characterizing the basins
of attraction and the associated attractor.

Therefore the general goals are to determine:
1. the number of different attractors

2. the periods of each attractor

3. the number of configurations within the basin of each attractor

4. the average duration of the transients, that is the average time
of evolution from the initial configuration (Garden of Eden) to
the attractor (Heaven or Hell).

Of course computer simulation is an important tool for such stud-
ies.
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