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1. Introduction

In a simulation study, probability and statistics are needed to under-
stand how to model a probabilistic system, validate the simulation
model, choose the input probability distributions, generate random
samples from these distributions, perform statistical analysis of the
simulation output data, and design the simulation experiment. This
chapter provides only a minimal coverage of the basics in the area of
probability and statistics that are relevant to simulation.
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2. Discrete Random Variables and Their Properties

In probability theory, a process whose outcome cannot be predicted
with certainty is called an experiment. The set of all possible out-
comes of an experiment is called the sample space S. The outcomes
themselves are specified as sample points in the sample space. In the
discrete case, the number of sample points is countable (meaning that
the number of sample points can be put in a one-to-one correspon-
dence with the set of positive integers).

For example, the process of tossing a die is an experiment, whose
outcome is either 1, 2, 3, 4, 5 or 6, and so the sample space is

S = {1, 2, 3, 4, 5, 6} . (1)

If the experiment consists of rolling a pair of dice, then

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), . . . , (6, 6)} , (2)

where (i, j) means that i and j appeared on the first and second die,
respectively.

A random variable X is defined as a function or rule that assigns
a real number, x, to each point in the sample space S. A random
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variable X is discrete if it can only take on a countable (possibly
infinite) number of possible values, x1, x2, . . . .

In the first experiment, if X is the random variable corresponding
to the face value of the die, then the possible values that X can take on
are 1, 2, 3, 4, 5, 6. In the second example, if X is the random variable
corresponding to the sum of the two die, then X assigns the value x
of 7 to the outcome (4, 3).

We will adopt the common notation of using capital letters such
as X, Y , Z to denote random variables, and lower case letters such
as x, y, z for the values taken on by these variables.

The cumulative distribution function F (x) of the random variable
X is defined for any real values of x by

F (x) = P (X ≤ x) −∞ < x < ∞, (3)

where P (X ≤ x) is the probability associated with the event {X ≤ x}.
Thus F (x) is the probability that in an experiment the random vari-
able X takes on a value no larger than x.

For example a life-insurance company, the age of a person, x, is
usually treated as discrete. Let X be the random variable denoting
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the age when a certain person dies. Then the company is interested
in the cumulative distribution function P (X ≤ x), which represents
the probability that the person does not live past age x.

A cumulative distribution function F (x) has the following proper-
ties:

1. 0 ≤ F (x) ≤ 1 for all x, because F (x) is a probability.

2. F (x) is non-decreasing [ i.e. if x1 < x2, then F (x1) ≤ F (x2) ].

3. F (−∞) = 0 and F (∞) = 1.
These properties can be easily proved from the definition of F (x).

The probability that X takes on a particular value x is given by
the probability mass function

p(x) = P (X = x), (4)

which must satisfy the following 2 conditions:
1. p(x) ≥ 0 for all x, since probabilities cannot be negative. We

usually omit any value of x which has p(x) = 0, in that case we
can assume p(x) > 0 for all x.
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2.
∑∞

x p(x) = 1, where the sum is to be carried out over all the
possible values of x. Each allowed value of x contributes exactly
one term to the sum. This is referred to as the normalization
condition.

Example 1: Consider a discrete random variable X that describe
the outcome of tossing a die. The possible values of x and their
respective probabilities are given by

x 1 2 3 4 5 6
p(x) 1

6
1
6

1
6

1
6

1
6

1
6

For any x, the cumulative distribution function can be written as

F (x) =
∑
x′≤x

p(x′). (5)

Example 2: Consider a discrete random variable X that obeys the
following distribution:

x 0 1 2
p(x) 1

4
1
2

1
4

To obtain the cumulative probability distribution function F (x),
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notice that F (x) must be 0 for x < 0 since X does not have a negative
value. At x = 0 we see that F (x) = P (X ≤ 0) = P (X = 0) = 1

4 .
F (x) continues to have this value till x = 1. At x = 1, F (x) = P (X ≤
1) = P (X = 0)+P (X = 1) = 1

4 + 1
2 = 3

4 . F (x) continues to have this
value till x = 2. At x = 2, F (x) = P (X ≤ 2) = P (X = 0) + P (X =
1) + P (X = 2) = 1

4 + 1
2 + 1

4 = 1. Clearly F (x) = 1 for x ≥ 2. So
F (x) remains constant except at each possible values of x where the
function jumps up by an amount p(x).
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The expected value of X is defined as

E(X) =
∑

x

xp(x) = µ, (6)

and represents the mean or average value.
For example 2, we have

E(X) = 0× 1
4

+ 1× 1
2

+ 2× 1
4

= 1. (7)

It can be shown [1] that if g(X) is a real-valued function of X,
then the expected value of g(X) is given by

E(g(X)) =
∑

x

g(x)p(x). (8)

However, unless g is a linear function,

E(g(X)) 6= g(E(X)). (9)

Example 3: Consider next a discrete random variable X that obeys
the following distribution:
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x -1.0 0.5 0 1.5 4.0
p(x) 0.1 0.2 0.2 0.4 0.1

E(X) = −1×0.1+0.5×0.2+0×0.2+1.5×0.4+4.0×0.1 = 1. (10)

Therefore the expected value is 1 just like example 2. However the
two distributions are quite different. The values in examples 3 are
distributed over a wider range than in example 2. A measure of the
width of a given distribution is the variance of a random variable,
which is defined by

V (X) = E((X − µ)2). (11)

It measures the sum of the squares of the deviation of the possible
values of X from its mean value. Notice that the variance is the
expected value of the square of a quantity and therefore cannot be
negative. It takes on its lowest possible value of zero for the case
where X can take on only a single value. In that case, the distribution
has no spread at all, and the variable X is really not random.
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For example 2, since the mean is 1, we have

V (X) = (0− 1)2 × 1
4

+ (1− 1)2 × 1
2

+ (2− 1)2 × 1
4

=
1
2
. (12)

However, for example 3, the variance

V (X) = (−1− 1)2 × 0.1 + (0.5− 1)2 × 0.2 + (0− 1)2 × 0.2(13)
+ (1.5− 1)2 × 0.4 + (4− 1)2 × 0.1 = 2.55,

is substantially larger, as expected.
Another useful quantity is the standard deviation σ defined by

σ =
√

V (X). (14)

The following results involving the expected values can be easily
proved: For an constant c

E(c) =
∑

x

cp(x) = c
∑

y

p(y) = c. (15)

For any constant c and any function of the random variable X, g(X),
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E(cg(X)) =
∑

x

cg(x)p(x) = c
∑

y

g(x)p(y) = cE(g(X)). (16)

If g1(X), g2(X), . . . are functions of X, then

E(g1(X) + g2(X) + . . . ) =
∑

x

(g1(x) + g2(x) + . . . )p(x) (17)

=
∑

x

g1(x)p(x) +
∑

x

g2(x)p(x) + . . .

= E(g1(x)) + E(g2(x)) + . . . .

Using the above results, we have

V (X) = E((X − µ)2) = E(X2 − 2µX + µ) (18)
= E(X2) + E(−2µX) + E(µ2)
= E(X2)− 2µE(X) + µ2.

Thus we obtain the following important result for the variance:

V (X) = E(X2)− µ2. (19)
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Next we consider the effect of shifting the random variable on
the variance by computing V (X + c) where c is a constant. First,
we have V (X + c) = E((X + c)2) − (E(X + c))2. The second term
E(X + c) = E(X) + E(c) = µ + c. The first term E((X + c)2) =
E(X2) + 2cE(X) + c2 = E(X2) + 2cµ + c2. Therefore V (X + c) =
E(X2) + 2cµ + c2 − (µ + c)2 = E(X2) − µ2 = V (X). This result
is to be expected because a rigid shift in the distribution should not
change the breath of the distribution.

Another result is

V (cX) = E((cX)2)− (E(cX))2 (20)
= c2(E(X2)− (E(X))2) = c2V (X).

Toc JJ II J I Back J Doc Doc I



Section 3: Continuous Random Variables and Their Properties 14

3. Continuous Random Variables and Their Prop-
erties

If the cumulative distribution function of a random variable X defined
by

F (X) = P (X ≤ x) for −∞ < x < ∞ (21)
is a continuous function of x, then X is a continuous random variable.

The probability density function f(x) for X is defined as the deriva-
tive of the cumulative distribution function:

f(x) =
dF

dx
, (22)

wherever the derivative exists. By writing

dF = f(x)dx, (23)

changing the variable from x to t to get

dF = f(t)dt, (24)

and integrating both sides of the equation from t = −∞ to t = x, we
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have ∫ x

−∞
dF =

∫ x

−∞
f(t)dt. (25)

The integral on the left-hand side can be evaluated to give F (x) −
F (−∞). Since F (−∞) = 0, we now have the cumulative distribution
function expressed in terms of the probability density function:

F (x) =
∫ x

−∞
f(t)dt. (26)

Thus for any x0, the area underneath the curve of f(x) from −∞ to x0

is precisely F (x0). We refer f(x) as the probability density function
because its integral gives a probability. This is analogous to the fact
that in Physics, the integral of the mass density over a certain region
gives the mass of that region.

The probability density function f(x) obeys the following proper-
ties:

1. Since F (x) is a monotonic non-decreasing function of x, we must
have f(x) = dF/dy ≥ 0 for any value of x.

2. Since F (∞) = 1, therefore
∫∞
−∞ f(x)dx = 1.
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Since F (x) = P (X ≤ x) gives the probability that X ≤ x, the
probability that X has a value in the interval a ≤ y ≤ b is

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) (27)

=
∫ b

−∞
f(x)dx−

∫ a

−∞
f(x)dx =

∫ b

a

f(x)dx.

Graphically P (a ≤ X ≤ b) is represented by the area of the region
below the f(x) curve from a to b. If we set a = b = x0, we see the
probability P (X = x0) of finding X having any particular value x0 is
exactly zero. This is in sharp contrast to the case of discrete random
variables where P (X = x0) is non-zero for certain discrete values of
x0.

Supposed that a continuous random variable X has a probability
distribution function

F (x) =


0, x < 0
x, 0 ≤ x ≤ 1
1, x ≥ 1.

(28)
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The probability density function is therefore given by

f(x) =
dF

dx
=


0, x < 0
1, 0 < x < 1
1, x ≥ 1.

(29)

Notice that it is undefined at x = 0 and x = 1.
In general the probability distribution function for a continuous

random variable must be continuous everywhere, but the probability
density function need not be everywhere continuous.

The expected value of a continuous variable X is defined in terms
of an integral by

E(X) =
∫ ∞

−∞
xf(x)dx = µ, (30)

provided that the integral exists. Since the integral is a limiting form
of a sum, consequently the results that we obtained for the discrete
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case are also valid for the continuous case. Therefore we have

E(g(X)) =
∫ ∞

−∞
g(x)f(x)dx (31)

E(c) = c

E(cg(X)) = cE(g(X))
E(g1(X) + g2(X) + . . . ) = E(g1(X)) + E(g2(X)) + . . . .
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3.1. Uniform Probability Distribution

• Expected Value
• Variance
• Mapping to Different Domain
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3.2. Normal Probability Distribution

The normal probability distribution is another often encountered dis-
tribution. It is especially important in understanding how computer
simulations based on random sampling work.

A random variable X has a normal probability distribution if it
has a probability density function

f(x) =
1√
2πσ

exp
[
− (x− µ)2

2σ2

]
−∞ < x < ∞, (32)

with real parameters µ and σ. In addition, σ must be positive. As
will be shown below, the expected value E(X) is µ, and the standard
deviation is σ. Notice that f(x) is properly normalized since∫ ∞

−∞
f(x)dx =

∫ ∞

−∞

1√
2πσ

exp
[
− (x− µ)2

2σ2

]
dx (33)

=
1√
2π

∫ ∞

−∞
exp

[
− t2

2

]
dt = 1,

where we have a change of variable from x to t = (x− µ)/σ.
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The probability density function has the form of a bell-shape curve
with a single peak at x = µ. The value at the peak is 1/

√
2πσ, and

so the smaller σ is the higher is the peak.
Letting x = µ + h be the point at which f(x) is equal to half its

peak value, inserting it into Eq. (32) and setting f to a half, yields

exp
[
− h2

2σ2

]
=

1
2
. (34)

Solving for h, which is referred to as the half-width of the peak, gives
h = ±

√
2 ln 2 σ ≈ ±1.177 σ. Decreasing σ decreases h and the peak

becomes sharper. At the same time the height of the peak increases
so that the total area underneath f(x) remains unity.
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Figure 1: Probability density function of a normal distribution. In
this example, µ = 3 and σ = 1.
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Figure 2: Probability density function for the Weibull distribution
with the shape parameter α = 1.5 and the scale parameter β = 6.0.
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• Expected Value
The expected value can be easily calculated because

E(X) =
1√
2πσ

∫ ∞

−∞
x exp

[
− (x− µ)2

2σ2

]
dx (35)

=
1√
2πσ

∫ ∞

−∞
(t + µ) exp

[
− t2

2σ2

]
dt

=
1√
2πσ

∫ ∞

−∞
t exp

[
− t2

2σ2

]
dt +

µ√
2πσ

∫ ∞

−∞
exp

[
− t2

2σ2

]
dt.

The first integral is zero since the integrand is an odd function. The
second integral is basically the same one encountered before for the
normalization. The result shows that E(X) = µ.
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• The Variance
The variance is given by

V (X) = E((X − µ)2) (36)

=
1√
2πσ

∫ ∞

−∞
(x− µ)2 exp

[
− (x− µ)2

2σ2

]
dx

=
2σ2

√
π

∫ ∞

−∞
t2 exp

[
−t2

]
dt

= σ2,

where we made a change of the variable of integration from x to t =
(x− µ)/(

√
2σ). Thus we see that σ is indeed the standard deviation.
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• Probability
For any x2 ≥ x1, the probability of find X having a value between x1

and x2 is

P (x1 ≤ X ≤ x2) =
1√
2πσ

∫ x2

x1

exp
[
− (x− µ)2

2σ2

]
dx (37)

=
1√
π

∫ t2

t1

exp[−t2]dt

=
1√
π

{∫ t2

0

−
∫ t1

0

}
exp[−t2]dt

=
1
2
[Φ(t2)− Φ(t1)],

where where we made a change of integration variable from x to t =
(x−µ)/(

√
2σ), and so t1 = (x1−µ)/(

√
2σ) and t2 = (x2−µ)/(

√
2σ),

and Φ(t) is the error function defined by

Φ(t) =
2√
π

∫ t

0

exp[−x2]dx. (38)
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Since the integrand is a positive function, Φ(t) is monotonic increasing
function of t. At t = 0, clearly Φ(0) = 0. At t = ∞, the integral can
be evaluated exactly and one finds that Φ(∞) = 1. Moreover

Φ(−t) =
2√
π

∫ −t

0

exp[−x2]dx (39)

= − 2√
π

∫ t

0

exp[−u2]du

= −Φ(t),

where we made a change of integration variable from x to u = −x.
Therefore Φ(t) is an odd function, which has the value of −1 at t =
−∞, rises monotonically to 0 at t = 0 and then to 1 at t = ∞. Here
the change of integration variable is from x to t = (x− µ)/σ.
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• The Rule of 3σs

Letting x1 = µ− 3σ and x2 = µ + 3σ in Eq. (37), we see that

P (µ− 3σ ≤ X ≤ µ + 3σ) =
1
2

[
Φ
(

3√
2

)
− Φ

(
− 3√

2

)]
(40)

= Φ
(

3√
2

)
≈ 0.9973.

What this means is that in a single trial, it is highly unlikely (less than
0.3% of a chance) to obtain a value for the normal random variable
X that differs from its mean value by more than 3σs.

• The most probable error
The most probable error, r, is defined so that

P (µ− r ≤ X ≤ µ + r) =
1
2
, (41)

which becomes
1
2

[
Φ
(

r√
2σ

)
− Φ

(
− r√

2σ

)]
= Φ

(
r√
2σ

)
=

1
2
, (42)
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by setting t1,2 = [(µ± r)− µ]/(
√

2σ) = ∓r/(
√

2σ) in Eq. (37). Thus
the most probable error is

r =
√

2Φ−1(1/2)σ ≈ 0.6745σ, (43)

where Φ−1 is the inverse function of Φ.

4. Sampling Distribution

We are interested in functions of N random variables X1, X2, . . . , XN

observed in a random sample selected from a population of interest.
The variables X1, X2, . . . , XN are assumed to be independent of each
other and obeying the same common distribution. From a random
sample of N observations, x1, x2, . . . , xN , we can estimate the popu-
lation mean µ with the sample mean

x̄ =
1
N

N∑
n=1

xn. (44)

The goodness of this estimate depends on the behavior of the random
variables X1, X2, . . . , XN and the effect that this behavior has on the
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random variable

X̄ =
1
N

N∑
n=1

Xn. (45)

Now suppose that the Xns are independent, normally distributed
variables, with a common mean E(Xn) = µ and a common variance
V (Xn) = σ2, for n = 1, 2, . . . , N . It can be shown that X̄ is a normally
distributed random variable. Its mean is

E(X̄) = E

(
1
N

N∑
n=1

Xn

)
=

1
N

N∑
n=1

E(Xn) =
1
N

N∑
n=1

µ = µ, (46)

and its variance is

V (X̄) = V

(
1
N

N∑
n=1

Xn

)
=

1
N2

N∑
n=1

V (Xn) =
1

N2

N∑
n=1

σ2 =
σ2

N
. (47)

Therefore X̄ has a mean µ̄ = µ and a variance σ̄2 = σ2/N .

Toc JJ II J I Back J Doc Doc I



Section 4: Sampling Distribution 31

4.1. Central Limit Theorem

It turns out that to a good approximation, X̄ has a normal distribu-
tion with a mean µ̄ = µ and a variance σ̄2 = σ2/N even when the
Xns are not normally distributed. The requirement is that the sample
size has to be large enough and a few individual variables do not play
too great a role in determining e sum. This is a consequence of the
Central Limit Theorem.

In Nature, the behavior of a variable often depends on the accu-
mulated effect of a large number of small random factors and so its
behavior is approximately normal. This is why we call it ”normal”.

The Central Limit Theorem can be stated more formally as follows:
Let X1, X2, . . . , XN be independent and identically distributed

(iid) random variables with mean E(Xn) = µ and variance V (Xn) =
σ2, then as N →∞, the variable

X̄ =
1
N

N∑
n=1

Xn (48)

has a distribution function that converges to a normal distribution
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function with mean µ̄ = µ and variance σ̄2 = σ2/N .
In reality, the Xns need not have the same identical distribution

function, and N needs not be extremely large. Often N = 5 or more
is large enough for a reasonably good approximate normal behavior
for X̄.
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5. General Scheme of Monte Carlo Simulation Method

In a Monte Carlo simulation, we compute a quantity of interest, say
q, by randomly sampling a population. We start by identifying a
random variable X whose mean µ is supposed to be given by q, the
quantity we want to compute. Let us denote the variance of X by σ2.

Suppose we sample the population N times where N is supposed
to be a large number. So we consider N independent random variables
X1, X2, . . . , XN , each obeying the same distribution as X, with the
same mean µ and variance σ2. From the Central Limit Theorem, the
variable

X̄ =
1
N

N∑
n=1

Xn (49)

is approximately normal with a mean µ̄ = µ and a variance σ̄2 =
σ2/N .
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Applying the Rule of the 3σs to X̄, we see that

P (µ− 3σ̄ ≤ X̄ ≤ µ + 3σ̄) = P

(
µ− 3σ√

N
≤ X̄ ≤ µ +

3σ√
N

)
(50)

= P

(∣∣∣∣∣ 1
N

N∑
n=1

Xn − µ

∣∣∣∣∣ ≤ 3σ√
N

)
≈ 0.9973.

Therefore we can approximate the value of q by the sample mean

x̄ =
1
N

N∑
n=1

xn. (51)

In all likelihood (with a 99.73% chance for being correct), the error
does not exceed 3σ/

√
N . In practice, the bound given by 3σ/

√
N

is too loose (overly cautious), it is commonly replaced by the most
probable error of 0.6745σ/

√
N .
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5.1. General Remarks on Monte Carlo Methods

Based on the above mathematical results, we can make the following
three general remarks concerning Monte Carlo simulations:

1. Note that the most probable error decreases with increasing N
as N− 1

2 . That means that our estimation for the value of q from
the sample mean gets better and better if more and more trials
or samples are used in the simulation. However, the dependence
of the error on N to the power of −1/2 means that the conver-
gence of the Monte Carlo method is in general very slow. So for
example, if we want to further decrease the probable error by a
factor of 10, we will need to use 100 times more samples.

2. The most probable error is proportional to σ. Different ways of
sampling the population lead to different values of σ. In the next
month or so, we will find different sampling schemes that will
reduce the value of σ and therefore reduce the probable error
for the same number of trials, N . These techniques are referred
to as variance reduction techniques.

3. The strong point about the Monte Carlo methods is that the

Toc JJ II J I Back J Doc Doc I



Section 5: General Scheme of Monte Carlo Simulation Method 36

methods are in general very flexible and can be readily adapted
to treat rather complex models.

Toc JJ II J I Back J Doc Doc I



Section 5: General Scheme of Monte Carlo Simulation Method 37

References

[1] Wackerly, Mendenhall and Scheaffer, ”Mathematical Statistics
with Applications”, 5th edition, (Duxburg, 1996).

[2] A proof can be found on page 82 of Wackerly, Mendenhall
and Scheaffer, ”Mathematical Statistics with Applications”, 5th
edition, (Duxburg, 1996).

9

Toc JJ II J I Back J Doc Doc I


	Table of Contents
	1 Introduction
	2 Discrete Random Variables and Their Properties
	3 Continuous Random Variables and Their Properties
	3.1 Uniform Probability Distribution
	• Expected Value
	• Variance
	• Mapping to Different Domain

	3.2 Normal Probability Distribution
	• Expected Value
	• The Variance
	• Probability
	• The Rule of 3s
	• The most probable error


	4 Sampling Distribution
	4.1 Central Limit Theorem

	5 General Scheme of Monte Carlo Simulation Method
	5.1 General Remarks on Monte Carlo Methods


