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Section 1: Introduction 3
1. Introduction

Monte Carlo simulation provides an estimation of the mean value by
randomly sampling the population. If the number of trials is IV, then
the error is always characterized by an N~1/2 dependence. This is a
rather slow convergence, because if we want to further decrease the
error say by a factor of 10, then we have to increase the number of
trials by a factor of 100.

As we noted before, the error is also proportional to the square root
of the variance of the function we are integrating, and the variance
has to do with the way how sampling is carried out. So far we have
only considered random and unbiased sampling of the population.
In this chapter, we will discuss methods in which we cheat a little
and sample the population in some carefully chosen biased fashion so
as to reduce the variance of the method and therefore to lower the
simulation error. These methods are referred to as variance reduction
methods. This biased sampling will be done more effectively over the
most important part of the population (the integrand) by appropriate
use of non-uniform random deviates. In the case of evaluating an
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Section 2: Motivations for Variance Reduction 4

integral of p(x) from a to b

b
1= [ ole) s (1)

by simulation, the most important part corresponds to the part of
the interval [a,b] where p(z) is large and so contributes most to the
integral. Because of this, the method is also known as importance
sampling.

2. Motivations for Variance Reduction

As we saw before the variance depends very much on the behavior of
the function, p(z) being integrated. If p(x) varies little in magnitude
within the domain of integration, then the variance is small. The
estimated mean from a uniform sampling of the integrand gives a very
accurate result for the integral. In the limit that p(z) is a constant,
the variance goes to 0, the estimated mean gives the exact answer for
I. On the other hand if p(x) varies significantly over the domain then
the variance is large, and so is the expected error in estimating the
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Section 2: Motivations for Variance Reduction 5

mean.

It is easy to see why the error behave as so. For example in the
sample mean Monte Carlo method, the function is sampled uniformly
within the interval [a,b]. Each sample point, z,, contributes a term
p(x,)/N to the estimate value of the mean, which when multiplied
by b — a and summed gives an estimation of the integral:

b—a &
I = (b — Cl)/,tf/ N P(iﬂn)- (2)

n=1

If p(z) varies in magnitude a lot within [a, b], then the sample points
falling near the minimum of the function contribute much less to the
estimated mean than points that fall near the peak of the function.
Sample points like these are to some extend wasted in the simulation
and the number of them should be minimized as much as possible. It
is clear that we should bias the way we sample the function so that
more points will be sampled near the peak of the function. This type
of sampling strategy is referred to as importance sampling.
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Section 3: Variance Reduction using the Rejection Method 6

3. Variance Reduction using the Rejection Method

One way to sample the function more near it peak than in the region
where it is small is to use the rejection method. The fact that p(z) is
in general not normalized does not affect our argument here.

As we discussed before in the reject method, in the graph of p(x)
versus x, if points can be generated so as to cover the area under the
curve within the domain, then the value of x of these points will be
distributed according to p(x). The question is how can these points be
generated efficiently? In the rejection method, we choose a compari-
son function w(x), which has a finite area, A, between a and b, and
within that domain w(z) > p(z). We also require that the indefinite
integral

x
W (z) :/ w(z) dz (3)
—0o0
can be obtained analytically, and Au = W (z) can be analytically in-
verted to give z = W~1(u). Here u is a uniform deviate. That means
that the inverse function method can be used to produce random
deviates that are distributed according to w(x). Thus points can be
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Section 3: Variance Reduction using the Rejection Method 7

generated uniformly covering the area beneath the w(x) curve. Out of
all these points, the ones lying above the p(z) curve are then rejected.
The remaining points must therefore lie underneath the curve.

If the total number of trials is N, out of which N’ points are
accepted, then we can approximate the integral as

NI
I~A N (4)

The reasoning here is exactly the same as that used for the Hit-Or-
Miss method.

Specifically, for each point x, lying beneath w(z), we let y, =
w(xy)u,, where u, are uniform deviates. We are interested in a dis-
crete random variable ), whose values ¢ are given by

|1, if y, < p(zy)
w={0 i ©)
As in the Hit-Or-Miss method, if we denote the ratio of the area under

p(x) to the area under w(z) by
I
= —, 6
r=1 ®
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then the discrete variable @) obeys the following probability distribu-
tion:

q 1 0
plg) || r | (1)
As we have seen before, the mean E(Q) = r and the variance

V(Q) = r(1 —r). The simulation gives I = Ar = AE(Q) and the
probable error for I is given by

I(A-1
™= 067 % 1)

This equation looks identical to the one we obtained before for the
Hit-Or-Miss method, except the area A is the area under the w(x)
curve and does not have to be the area of an inscribing rectangle.
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3.1. Algorithm for the Generalized Rejection Method




Section 3: Variance Reduction using the Rejection Method 10

3.2. Application of the Rejection method

We will apply the above technique to compute the integral of the sine
function

w/2
I :/ sinx dx. (8)
0

As x goes from 0 to 7/2, the sine function goes from 0 to to a peak
value of 1. We will use the comparison w(z) = x because z > sinx
for all « in [0,7/2], and the inverse function method can be used to
generate random deviates distributed according to this w(z). Notice
that we cannot directly use the results we derived previously for a
probability density function varying as a power of x. Because we
assumed the domain to be the interval [0, 1]. Of course we can scale the
results to fit the present interval of [0,7/2]. However the calculation
is so simple that it is easier to repeat it again here.

We first calculate
2

W(x):/oxa?dm:z. (9)
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Section 3: Variance Reduction using the Rejection Method 11

The area under the w(x) curve is given by
2

A=W(n/2) = (10)
We choose a uniform deviate u and set Au = W (x), that is
72 x?
T 11
U= (11)

Solving for z in terms of u gives us a formula for generating the non-

uniform deviates distributed according to this w(x):
0

Ty = Ew/un. (12)

We can then follow the procedure for the rejection method to com-

pute the integral, I. The estimated value for I can be compared with

the exact answer of 1. We can also use the data to estimate the prob-

able error using Eq.(7). According to theory, since I = 1 and from

Eq.(10) A = 72/8, the probable error for the present problem should
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Section 3: Variance Reduction using the Rejection Method 12

be given by

M =067\ —2—
error N

This is exactly the same as the probably error if it is simulated using
the sample mean method. For the present problem and the present
choice of w(x), we expect the probable error for the rejection method
to be the same as that for the sample mean. This agreement is purely
accidental. If a slightly different function w(x) is used to cover up
p(z), the area under w(x), A, will be different, and the agreement
will not hold.

(13)
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Section 4: Motivation of the Importance Sampling Method 14
4. Motivation of the Importance Sampling Method

In the sample mean method, the region within the domain of the inte-
gral is sampled in a uniform and unbiased way. If the integrand varies
in magnitude significantly within the domain then sample points that
fall near the minimum of the function contribute little to the integral
and to some extend are wasted in the simulation.

On the other hand, if the integrand does not vary much in mag-
nitude within the domain, then each sample point contributes almost
equally to the integral. In the limit that the integrand is a constant,
then one can obtain the exact value of the mean even with a single
sample point, 1. The resulting estimation of the integral therefore
has no error:

b—a o

I'=— > plxn) = (b= a)p(x1), (14)

because the area of interest is then a rectangle whose height is given
exactly by p(z1).
If one looks at the integral for I, the integrand is given by p(z).
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Section 5: Important Sampling 15

How can we change it so that the new integrand becomes smoother?
There is no other alternatives except to try to make an appropriate
transformation of the variable of integration.

5. Important Sampling

We now want to consider transforming the variable of integration in
such a way that more points will sample the more significant part of
the integrand. This method of variance reduction is referred to as
importance sampling.

To see how to make the necessary transformation, we start with
a function f(x) that is non-negative within the interval [a, b], and its
indefinite integral, which we denote by F(z), can be computed

Flz) = [ F(z) da. (15)

Note that f(x) does not have to be normalized. If it is normalized
then it can be interpreted as a probability density function.
Next let us transform the integration variable from x to y via the
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relation
y = F(x). (16)
Differentiating this equation we have % = f(z) and so dx = f‘g). We

can invert the above relation to express x in terms of y: x = F~1(y).
The integral, I, can now be rewritten as

v dee [P g [T pET W)
! ‘/a plz) d ‘/a @) dy‘/w i)y v U0

Now specifically what should we pick for f(z)? It is clear that
if we choose it to be a constant ¢ times p(x), then in that case the
integrand, when expressed in terms of the variable y, is exactly given
by a constant 1/¢, and we have seemingly achieved what we intended
to achieve. However, a closely look reveals that the solution for I in
Eq. (17) is given by

1
I'=—(F() - F(a)), (18)
but the function F(z) is defined in terms of an integral of f(z), which
in this case involves an integral of p(z). But this is what we want to
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Section 5: Important Sampling 17

find in the first place. More precisely we find,

I= %(F(b) - [/ / ] ) dox = /ab p(x) dzx. (19)

Thus we are back to where we started.

Of course we do not have to be so ambitious as to choose a function
f(x) so as to make the integrand exactly constant, as we attempted
above. The strategy for reducing the variance of our simulation is
now very clear. What we need is to pick a non-negative function
f(z) which is large where p(z) is large and is small where p(x) is
small. In that case the integrand is then rather smooth after the
above transformation is made. Moreover the function f(z) should be
such that it’s indefinite integral can be calculated to obtain F'(z), and
in addition F~! can be found by inverting F analytically, or accurate
and efficient numerical approximations for F~! is available.

Instead of looking at it as a transformation of the integration vari-
able, there is an equivalent view of Eq. (17). First note that the
overall scale for f(x) is irrelevent. For example, changing it by a scale
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Section 5: Important Sampling 18

factor of @ means that dy is changed by exactly the same factor and so
the equation does not chanage. Therefore we can assume that f(x) is
normalized, and so it can considered as a probability density function.
Next, since dy = f(x) dz we can write in Eq. (17) as

/ f(z) /ab {?((m f(@) d. (20)

We also define an average or expected value of an arbitrary function

n(x) by )
<= [ w0 do (21)

It is the average of the n(z) weighted by a probability density function
f(x). Therefore in terms of the function

_ plx)
@) = 222, (22)
we have .
I= / (@) f(z) de =<y >; . (23)
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Section 5: Important Sampling 19

Again the idea is to choose a probability density function f(x) that
is large where p(z) is large and small where p(z) is small, so that
~v(x) varies little within the domain [a,b]. If x,, are random deviates
distributed according to the probability density function f(x), then
we can estimate the value of < v >, by the sample average so that
the integral can be approximated by

N
1
I=< i N Z V(xn)a (24)
n=1

where N is the number of sample points. The probable error is clearly
given by
Vi(v)

Lopror = 0.671) L) 25
i (25)

where V(7) is the variance of v(x) defined by
Vi) =<7* >5 —(<7>p)* (26)

The variance can be estimated from the sampled values v(z,,) because
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we can estimate < 42 > by
2 1 ¢ 2
<7 >fzﬁzy (). (27)
n=1
Therefore we can estimate the probable error from the sample data.
Theoretically since < v >¢= I, the theoretical value for the prob-
able error is given by

s =067 M

28
error N ( )
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5.1. Importance Sampling Algorithm

5.2. The Special Case of Uniform f(x)

If we choose a probability density function f(z) as indicated above,
we expect the variance will be reduced. Of course the above formalism
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still works even if we choose an f(x) that is small where p(x) is large
and is large where p(x) is small. In that case the variance is expected
to be larger than in the sample mean method where the sampling is
done uniformly. For the special case where f(z) is a constant, we
expect the method to be exactly the same as the sample mean. This
is indeed the situation as can be easily checked analytically.

First, for a constant f(z), it must be given for z within the interval
[a,b] by 1/L , where L is the length of the interval. Second for a
uniform distribution, the sample points are given by x, = Lu, + a,
where the u,, are uniform deviates. The sampled values are therefore
given by v(z,) = Lp(z,), and so the integral is approximated by

[
I'~ N Z p(xn)v (29)
n=1

which is precisely the same expression as for the sample mean method.
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Section 5: Important Sampling 23
5.3. An Example of Using Importance Sampling

As an example illustrating the use of the importance sampling method
to reduce the variance in a Monte Carlo simulation, we will consider
again the problem of computing the integral

/2
I :/ sinx dx. (30)
0

For this problem we have a = 0, b = 7/2, L = 7/2 and p(z) = sinx.
Notice that the integrand p(z) is small when z is small and has a peak
of magnitude 1 at the right end point of 7/2, as shown by the blue
solid curve in the figure. The variance of p is not small, and we expect
that the importance sampling method can significantly improve the
accurate of the simulation.

We seek a probability density function f(z) that is small near the
left end point and large near the right end point. Moreover f(x) must
be simple enough that the inverse function method can be applied to
generate random deviates that are distributed according to f(z). We
will use a linear function for f(x) and write f(z) = ax. The value of
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« is determined from normalization of f(z):

/2 2
/f m—a/ xdﬂ?:%:L (31)

and so we have a = 8/72. Therefore f(z) = 2% and so

_ plx)  wisinz

Notice that y(z), as shown by the red dashed curve in the figure, does

not vary much within the domain. It takes on its maximum value of
about 1.234 at 0 and decreases monotonically to about 0.785 at 7/2.

(32)
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Important Sampling

Sample Mean and Importance Sampling Methods
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Setting this equal to uniform deviates u,, and solving for x gives the
non-uniform deviates distributed according to f(x):
™

0 = 2 i (34)

We will use these points to sample the function «y(x). The sampled
2 sin Ty

o Therefore our estimate for
n

values are then given by ~, =

the integral is I’ = % 25:1 Yn. We can of course also estimate the

variance and therefore the probable error from the data.

Before we present the results of our simulation, we want to point
out that the present integral has an exact answer of [ =<y >;= 1.
Moreover we also have

9 72 (™% sin
<’Y >f:§ . -

2

(35)

The above integral is related to the cosine-integral ci(m), which has
an approximate value of 0.824. Therefore the variance is given by

2
Vi(7) =~ 0.824% ~1. (36)
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It is interesting to compare the theoretical values of the proba-
ble errors obtained for this integral using the Hit-Or-Miss method,
the sample-mean method and the importance sampling method. The
ratios of these errors are given by

e ers, = JTon T ORI

= 0.756 :0.483:0.129.

Thus the probable error in the important sampling method is about
3.7 times smaller than for the sample mean method. In other words,
in order to achieve the same accuracy of the importance sampling
method using the sample mean method, about 14 times more sam-
ple points must be used. Although the CPU time needed to run a
simulation here is proportional to the number of sample points, the
importance sampling method is expected to be a little less than 14
times faster than the sample mean method, assuming roughly the
same error, since the importance sampling method involves a slightly
more complicated integrand.
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The figure also shows the points used in the sample mean method.
They are distributed rather uniformly in the interval. On the other
hand, the points used in the importance sampling method are dis-
tributed quite non-uniformly. There are many more points for larger
values of x than for smaller values.

6. Comparing the Probable Errors for the Four Meth-
ods

Four different methods for computing the integral of a function have
been discussed, they are the Hit-Or-Miss method, the sample mean
method, the rejection method and the importance sampling method.
The probable errors expected of these methods will be analyzed here.
We recall the following general expressions for the most probable er-
rors of these methods:

o = oery AL

e (39)
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L% de—1I2
I = 0.674/ %7 (39)

I(A-1)
v = 0. _
error 0 67 N ’
where A is the area beneath the comparison function.

25, _J2
I, =067/ % (41)

Notice that in all of these expressions, the second term in the variance
is always given by I2. For the important sampling method, we note

that - b o
2 p*(x) p*(x)
<'y>=/ flz dx:/ dz. 42
= P@ "=, T ()
To compare the probable error, we need to compare the following 4
terms:

b b b b 2 T
Lh/ p(x) dx : L/ p*(x) dx - A/ p(x) dx : P ((x)) dx. (43)
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For the Hit-Or-Miss method, since h cannot be less than the maximum
of the function p(x) in the domain, its probable error is normally the
largest. The rejection method can have a probable error comparable
to the sample mean method, depending on how well one can choose
the comparison function. The important sampling method is expected
to be the best if we have a probability density function f(x) that has
a variation in z similar to that of p(z).
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