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1. Introduction

Genetic algorithms are computer algorithms or procedures modeled
after genetics and the laws of natural selection. Genetics algorithms
are often used to conduct searches and in particular to find opti-
mal solutions for optimization problems.[2] We will consider a more
common form of an optimization problem known as unconstrained
optimization. In order to be able to fully appreciate the power of
genetic algorithms we will first discuss briefly some of the more tradi-
tional optimization methods. We will see some of their strengths and
shortcomings when compared with genetic algorithms.

2. Traditional Methods in Optimization

In an optimization problem, one has a scalar function f , which de-
pendents on a set of parameters, x1, x2, . . . , xN . The goal is to find
a set of values for x1, x2, . . . , xN which maximizes the function. The
function is often referred to as the payoff function. In genetic algo-
rithms, the function is more commonly known as the fitness function.
By reversing the sign of the function we can of course also consider
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minimization.
We will briefly mention some of the traditional methods for opti-

mization problems.

2.1. Enumerative

The basis for enumerative techniques is simplicity itself. To find the
optimum value in a problem space (which is finite), look at the func-
tion values at every point in the space. The problem here is obvious.
This is horribly inefficient. For very large problem spaces, the com-
putational task is massive, perhaps intractably so.

2.2. Random Search Algorithms

Random searches simply perform random walks of the problem space,
recording the best optimum values discovered so far. Efficiency is a
problem here as well. For large problem spaces, they should perform
no better than enumerative searches. They do not use any knowledge
gained from previous results and thus are both dumb and blind.
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2.3. Hill Climbing

Hill climbing optimization techniques have their roots in the classical
mathematics developed in the 18th and 19th centuries. In essence,
this class of search methods finds an optimum by following the lo-
cal gradient of the function (they are sometimes known as gradient
methods). They are deterministic in their searches. They generate
successive results based solely on the previous results.

The steepest descent method is one of the more well-known meth-
ods within this class. Starting at an initial point x1, x2, . . . , xN in
an N-dimensional space the gradient at that point is computed and a
step is made in a direction opposite to that direction. The procedure
is then repeated until a maximum of the function is found. An exam-
ple of the trajectory traced by these points are shown in the following
figure for a case in which f has a rather simple form.

There are several drawbacks to hill climbing methods. Firstly,
they assume that the problem space being searched is continuous in
nature. In other words, derivatives of the function representing the
problem space exist. This is not true of many real world problems
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where the problem space is noisy and discontinuous.
Another major disadvantage of using hill climbing is that hill

climbing algorithms only find the local optimum in the neighborhood
of the current point. They have no way of looking at the global picture
in general. However, parallel methods of hill-climbing can be used to
search multiple points in the problem space. This still suffers from the
problem that there is no guarantee of finding the optimum value, espe-
cially in very noisy spaces with a multitude of local peaks or troughs.
Examples of some of these more challenging types of functions are
shown in the following figures.

2.4. Randomized Search Techniques

Randomized search algorithms uses random choice to guide them-
selves through the problem search space. But these are not just sim-
ply random walks. These techniques are not directionless like the
random search algorithms. They use the knowledge gained from pre-
vious results in the search and combine them with some randomizing
features. The result is a powerful search technique that can handle

Toc JJ II J I Back J Doc Doc I



Section 2: Traditional Methods in Optimization 7

noisy, multimodal (having multiple peaks) search spaces with some
relative efficiency. The two most popular forms of randomized search
algorithms are simulated annealing and genetic algorithms.

2.5. Some Challenging Problem Spaces

Optimization problems usually become rather challenging when the
number of parameters N in the problem is large and when the function
to be optimized is rather complex. Examples of some of the most
complex functions in two dimensional parameter space are shown in
the following figures. Traditional optimization techniques do not have
a chance in attacking these problems.
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It is clear that these functions are artificially made up to illustrate
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some of the subtle problems that can be encountered in optimizing
a function. In real-world problems, these subtleties arise most often
when the number of parameters are large and visualization of the
function is then impossible.

3. Genetic Algorithms

The inspiration and motivation of genetic algorithms comes from look-
ing at the world around us and seeing a staggering diversity of life.
Millions of species, each with its own unique behavioral patterns and
characteristics, abound. Yet, all of these plants and creatures have
evolved, and continue evolving, over millions of years. Each species
has developed physical features and normal habits that are in a sense
optimal in a constantly shifting and changing environment in order to
survive. Those weaker members of a species tend to die away, leaving
the stronger and fitter to mate, create offspring and ensure the con-
tinuing survival of the species. Their lives are dictated by the laws of
natural selection and Darwinian evolution. And it is upon these ideas
that genetic algorithms are based.

Toc JJ II J I Back J Doc Doc I



Section 3: Genetic Algorithms 15

We have to understand to see how each species has evolved through-
out the ages to such an almost perfect status. Within most cells in
the human body (and in most other living organisms) are rodlike
structures called chromosomes. These chromosomes dictate various
hereditary aspects of the individual. Within the chromosomes are in-
dividual genes. A gene encodes a specific feature of the individual.
For example, a person’s eye color is dictated by a specific gene. The
actual value of the gene is called an allele.

This is a grossly oversimplified look at genetics, but will suffice to
show its correlation with genetic algorithms. A hierarchical picture is
built up, with alleles being encoded as genes, with sequences of genes
being chained together in chromosomes, which makes up the DNA of
an individual.

When two individuals mate, both parents pass their chromosomes
onto their offspring. In humans, who have 46 paired chromosomes
in total, both parents pass on 23 chromosomes each to their child.
Each chromosome passed to the child is an amalgamation of two chro-
mosomes from a parent. The two chromosomes come together and
swap genetic material, and only one of the new chromosome strands
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is passed to the child. So the chromosome strands undergo a crossover
of genetic material, which leads to a unique new individual.

As if this were not enough, genetic material can undergo muta-
tions, resulting from imperfect crossovers or other external stimuli.
Although mutation is rare, it does lead to an even greater diversifi-
cation of the overall gene pool of the population. It must be noted
however that too much of mutation is in fact harmful and can destroy
good genetic code, so the rate of mutation must be low in order to
prevent severe degradation of the genetic pool.

Genetic algorithms exploit the idea of the survival of the fittest and
an interbreeding population to create a novel and innovative search
strategy. The first step in a GA is to find a suitable encoding of
the parameters of the fitness function. This is usually done using
a population of strings, each representing a possible solution to the
problem. Instead of using strings other schemes such as trees and
matrices can also be used to encode the parameters. Notice that an
entire population of strings rather than a single string is used. The
genetic algorithm then iteratively creates new populations from the
old by ranking the strings and interbreeding the fittest to create new
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strings, which are (hopefully) closer to the optimum solution to the
problem at hand. So in each generation, the GA creates a set of
strings from the bits and pieces of the previous strings, occasionally
adding random new data to keep the population from stagnating.
The end result is a search strategy that is tailored for vast, complex,
multimodal search spaces.

Genetic algorithms are a form of randomized search, in that the
way in which strings are chosen and combined is a stochastic process.
This is a radically different approach to the problem solving methods
used by more traditional algorithms, which tend to be more deter-
ministic in nature, such as the gradient methods used to find minima
in graph theory.

The idea of survival of the fittest is of great importance to genetic
algorithms. Genetic algorithms use a fitness function in order to select
the fittest string that will be used to create new, and conceivably
better, populations of strings. The fitness function takes a string and
assigns a relative fitness value to the string. The method by which
it does this and the nature of the fitness value does not matter. The
only thing that the fitness function must do is to rank the strings in
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some way by producing the fitness value. These values are then used
to select the fittest strings. The concept of a fitness function is, in
fact, a particular instance of a more general AI concept, the objective
function

The population can be simply viewed as a collection of interact-
ing creatures. As each generation of creatures comes and goes, the
weaker ones tend to die away without producing children, while the
stronger mate, combining attributes of both parents, to produce new,
and perhaps unique children to continue the cycle. Occasionally, a
mutation creeps into one of the creatures, diversifying the population
even more. Remember that in nature, a diverse population within a
species tends to allow the species to adapt to it’s environment with
more ease. The same holds true for genetic algorithms.

3.1. Differences Between GAs and Traditional Meth-
ods

We will now discuss the basics differences between genetic algorithms
and traditional methods.
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Genetic algorithms deal with a coded form of the function values
(parameter set), rather than with the actual values themselves. So,
for example, if we want to find the maximum of a function f(x1, x2)
of two variables, the GA would not deal directly with x1 or x2 val-
ues, but with strings that encode these values. For example strings
representing the binary values of the variables can be used.

Genetic algorithms use a set, or population, of points to conduct a
search, not just a single point on the problem space. This gives GAs
the power to search noisy spaces littered with local optimum points.
Instead of relying on a single point to search through the space, the
GAs looks at many different areas of the problem space at once, and
uses all of this information to guide it.

Genetic algorithms use only payoff information to guide themselves
through the problem space. Many search techniques need a variety
of information to guide themselves. Hill climbing methods require
derivatives, for example. The only information a GA needs is some
measure of fitness about a point in the space (sometimes known as an
objective function value). Once the GA knows the current measure
of ”goodness” about a point, it can use this to continue searching for
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the optimum.
GAs are probabilistic in nature, not deterministic. This is a direct

result of the randomization techniques used by GAs.
GAs are inherently parallel. Here lies one of the most powerful

features of genetic algorithms. GAs, by their nature, are very par-
allel, dealing with a large number of points (strings) simultaneously.
Holland has estimated that a GA processing n strings at each gener-
ation, the GA in reality processes n3 useful substrings. This becomes
clearer later on when schemata are discussed.

Genetic Algorithms Traditional Opti-
mization Methods

Work with: coding of parameter set parameters directly
Search: a population of points a single point
Use info: payoff (objective function) payoff + deriva-

tives, etc.
Rules: probabilistic - random popu-

lation with random mating,
cross-over and mutation

fully deterministic
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3.2. Basic Genetic Algorithm Operations

We will now discuss the inner workings of a GA and consider opera-
tions that are basic to practically all GAs. With GAs having such a
solid basis in genetics and evolutionary biological systems, one might
think that the inner workings of a GA would be very complex. In fact,
the opposite is true. Simple GAs are based on simple string copying
and substring concatenation, nothing more, nothing less. Even more
complex versions of GAs still use these two ideas as the core of their
search engine. All this will become clear when we walk through a
simple GA optimization problem.

There are three basic operators found in every genetic algorithm:
reproduction, crossover and mutation. There are some optimization
algorithms that do not employ the crossover operator. These algo-
rithms will be referred to as evolutionary algorithms rather than ge-
netic algorithms.
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• Reproduction
The reproduction operator allows individual strings to be copied for
possible inclusion in the next generation. The chance that a string
will be copied is based on the string’s fitness value, calculated from
a fitness function. For each generation, the reproduction operator
chooses strings that are placed into a mating pool, which is used as
the basis for creating the next generation.

String Fitness Value Fitness Percentage
01001 5 5/26 ≈ 19%
10000 12 12/26 ≈ 46%
01110 9 9/26 ≈ 35%

total = 26
There are many different types of reproduction operators. One

always selects the fittest and discards the worst, statistically select-
ing the rest of the mating pool from the remainder of the popula-
tion. There are hundreds of variants of this scheme. None are right or
wrong. In fact, some will perform better than others depending on the
problem domain being explored. For a detailed, mathematical com-
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parison of reproduction/selection strategies for genetic algorithms, see
the work of Blickle.

For the moment, we shall look at the most commonly used repro-
duction method in GAs. The Roulette Wheel Method simply chooses
the strings in a statistical fashion based solely upon their relative (ie.
percentage) fitness values. This method can be implemented for ex-
ample by using a roulette wheel. The roulette wheel is nothing but an
implementation of the inverse function method for generating discrete
random deviates.
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When selecting the three strings that will be placed in the mating
pool, the roulette wheel is spun three times, with the results indicating
the string to be placed in the pool. It is obvious from the above wheel
that there’s a good chance that string 10000 will be selected more
than once. This is fine. Multiple copies of the same string can exist in
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the mating pool. This is even desirable, since the stronger strings will
begin to dominate, eradicating the weaker ones from the population.
There are difficulties with this, as it can lead to premature convergence
on a local optimum.

• Crossover
Once the mating pool is created, the next operator in the GA’s arsenal
comes into play. Remember that crossover in biological terms refers
to the blending of chromosomes from the parents to produce new
chromosomes for the offspring. The analogy carries over to crossover
in GAs.

The GA selects two strings at random from the mating pool. The
strings selected may be different or identical, it does not matter. The
GA then calculates whether crossover should take place using a pa-
rameter called the crossover probability. This is simply a probability
value p and is calculated by flipping a weighted coin. The value of
p is set by the user, and the suggested value is p=0.6, although this
value can be domain dependant.

If the GA decides not to perform crossover, the two selected strings
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are simply copied to the new population (they are not deleted from
the mating pool. They may be used multiple times during crossover).
If crossover does take place, then a random splicing point is chosen in
a string, the two strings are spliced and the spliced regions are mixed
to create two (potentially) new strings. These child strings are then
placed in the new population.

As an example, suppose that the strings 10000 and 01110 are se-
lected for crossover and the GA decides to mate them. The GA then
randomly selects a splicing point, say 3. Then the following crossover
will then occur:

100|00 10010
⇒

011|10 01100

The newly created strings are 10010 and 01100.
Crossover is performed until the new population is created. Then

the cycle starts again with selection. This iterative process continues

Toc JJ II J I Back J Doc Doc I



Section 3: Genetic Algorithms 27

until any user specified criteria are met (for example, fifty generations,
or a string is found to have a fitness exceeding a certain threshold).

• Mutation
Selection and crossover alone can obviously generate a staggering
amount of differing strings. However, depending on the initial pop-
ulation chosen, there may not be enough variety of strings to ensure
the GA sees the entire problem space. Or the GA may find itself
converging on strings that are not quite close to the optimum it seeks
due to a bad initial population.

Some of these problems are overcome by introducing a mutation
operator into the GA. The GA has a mutation probability, m, which
dictates the frequency at which mutation occurs. Mutation can be
performed either during selection or crossover (though crossover is
more usual). For each string element in each string in the mating
pool, the GA checks to see if it should perform a mutation. If it
should, it randomly changes the element value to a new one. In our
binary strings, 1s are changed to 0s and 0s to 1s. For example, the
GA decides to mutate bit position 4 in the string 10000:
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10000 ⇒ 10010
The resulting string is 10010 as the fourth bit in the string is

flipped. The mutation probability should be kept very low (usually
about 0.001%) as a high mutation rate will destroy fit strings and de-
generate the GA algorithm into a random walk, with all the associated
problems.

But mutation will help prevent the population from stagnating,
adding ”fresh blood”, as it were, to a population. Remember that
much of the power of a GA comes from the fact that it contains a
rich set of strings of great diversity. Mutation helps to maintain that
diversity throughout the GA’s iterations.

3.3. GA Example: Optimization Problem

We illustrate how GA can be applied to solve an optimization problem.
Specifically we want to find the integer x in the interval [0, 31] that
maximizes the function f(x) = x2. Clearly the answer is given by
x = 31. Our goal here is to see how GA can be used to find this

Toc JJ II J I Back J Doc Doc I



Section 3: Genetic Algorithms 29

answer.
The first thing we need to do is to convert the problem in such a

way that we can apply GA ideas. In the context of GA, it is obvious
that the fitness function is f(x) = x2, and the parameter of interest
is x.

The least obvious decision is how parameter x should be coded.
There are clearly many ways to accomplish that. In this example we
will code x by its binary representation. Since the maximum value of
x is 31, we code x using a finite string of 5 bits.

The next choice is the size of the population. We choose a very
small population of only 4 so that we can go through by hand one
generation to see how GA actually works. We randomly choose 4
strings, each consisting of a random sequence of 5 bits, to represent
the genes of the 4 individuals in that population.

For example, we obtain the strings as shown in the first column
of the following table. Their corresponding value of x (their pheno-
types) are given by the decimal values of the strings, as shown in
column 2. Their fitnesses as determined by the fitness function are
shown in column 3. The total fitness of the population is 1170, with a
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maximum fitness of 576 and an average fitness of 293. The fitness of
each individual as a fraction of the total fitness is displayed in column
4. Notice that individual 2 is the fittest and individual 3 is the least
fit.

Individual String x Fitness f(x) Relative Fitness
1 01101 13 169 0.144
2 11000 24 576 0.492
3 01000 8 64 0.055
4 10011 19 361 0.309

total = 1170
avg. = 293
max. = 576

To mimic the process of reproduction, each string is copied with
a probability given by its relative fitness to the next generation. Sup-
pose we get 1 copy of individual 1, 2 copies of individual 2, 0 copy of
individual 3, and 1 copy of individual 4. These strings then go into
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the mating pool.

01101
11000
11000
10011

Next these strings are paired up randomly and their genetic ma-
terial is switched at a randomly chosen site. For example, we pair up
string 1 and 2 and pick a cross-over point at 4. String 3 and 4 are
paired up and their strings are swapped at site 2. The genes of the
off-springs are then given by the following strings.
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011|01 01100
⇒

110|00 11001
11|000 11011

⇒
10|011 10000

Suppose we use a mutation rate of 0.001 and perform bit changes
on a bit-by-bit fashion. We have a total of 20 bits here, and therefore
the average number of bit changes per generation is 20×0.001 = 0.02.
We assume there is no mutation for this generation.

Therefore the new generation has the following genetic makeup.
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Individual String x Fitness f(x)
1 01100 12 144
2 11001 25 625
3 11011 27 729
4 10000 16 256

total = 1754
avg. = 439
max. = 729

Notice that the fitness

of the fittest individual increases from 576 to 729. Furthermore the
average fitness of the entire population increases from 293 to 429. Also
notice that the best string of the first generation got 2 copies due to
its fitness. The first copy 1100|0− > 1100|1 increases its fitness, and
the second copy 11|000− > 11|011 does even better.

There are many different ways in which one can carry out the
cross-over process. However there is one problem with the cross-over
process that we have just considered. With an initial population of
the following strings, we will never be able to find the maximum of
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the function. Why?

01001
11000
11000
10011

The most optimal solution is given by x = 31, which has a bi-
nary representation of 11111. However if we use the above cross-over
procedure then we can never obtain a 1 at the third position of the
string. In this case we will have to rely on mutation to create a 1 at
that position.
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