
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

NORMAL DISTRIBUTION

K. Ming Leung

Abstract: The conventional polar (box-Muller) algo-
rithm as well as the latest version of the Ziggurat algo-
rithm for generating normally distributed random num-
bers are discussed.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: March 3, 2004 Version 2.0

mailto:mleung@poly.edu


Table of Contents
1. Introduction
2. The Polar (box-Muller) Algorithm
3. The Ziggurat Method

3.1. Setting up the Ziggurat



Section 1: Introduction 3

1. Introduction

The normal distribution has a probability density given by

f(x) = c e−x2/2,

with normalization factor c. Normalization requires that∫ ∞

−∞
dxf(x) = c

∫ ∞

−∞
dx e−x2/2 = 1.

Therefore
c = I−1,

where I is the integral

I =
∫ ∞

−∞
dx e−x2/2.

The amazing thing about this integral is that it is easier to compute
I2 than I itself. The integral for I2 is a two-dimensional one, which
because of the rotational symmetry should be performed in polar co-

Toc JJ II J I Back J Doc Doc I



Section 2: The Polar (box-Muller) Algorithm 4

ordinates. The calculation gives:

I2 =
∫ ∞

−∞
dx e−x2/2

∫ ∞

−∞
dy e−y2/2 =

∫ ∞

−∞

∫ ∞

−∞
dx dy e−(x2+y2)/2

=
∫ ∞

0

dr r

∫ 2π

0

dθ e−r2/2 = 2π

∫ ∞

0

dr r e−r2/2.

Changing the integration variable to u = r2/2 then gives

I2 = 2π

∫ ∞

0

du e−u = 2π e−u|0∞ = 2π.

Therefore I =
√

2π and c = 1/
√

2π. The normalized form of the
probability density function is then given by

f(x) =
1√
2π

e−x2/2.

2. The Polar (box-Muller) Algorithm

We discuss next methods for generating random numbers that are
normally distributed. One can in fact use the inverse function method

Toc JJ II J I Back J Doc Doc I



Section 2: The Polar (box-Muller) Algorithm 5

for this distribution. The indefinite integral of f(x) involves the error
function and therefore the normally distributed random number are
given in terms of the inverse error function. It turns out that faster
methods are available.

One of those methods is the polar (box-Muller) method[1, 2, 3]
which generates two values at a time. It involves finding a random
point in the unit circle by generating uniformly distributed points in
the [-1, 1] × [-1, 1] square and rejecting any outside of the circle. For
each point accepted, a polar transformation produces two independent
normally distributed numbers.

The following C/C++ code is an implementation of the box-Muller
algorithm. Here we assume that u1 and u2 are two independent uni-
formly distributed numbers.
do { x1 = 2.0*double(rand())/RAND_MAX - 1;

x2 = 2.0*double(rand())/RAND_MAX - 1;
w = x1*x1 + x2*x2;

} while (w >= 1);
w = sqrt((-2.0*log(w))/w);

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 6

y1 = x1*w;
y2 = x2*w;

This algorithm does not involve any approximations, so it has the
proper behavior even in the tail of the distribution. However it is
moderately expensive since the efficiency of the rejection method is

e =
π

4
≈ 0.785,

so about 21% of the uniformly distributed points within the square
are discarded. The square root and the logarithm also contribute
significantly to the computational cost.

3. The Ziggurat Method

The ziggurat method has been developed and refined over the years
by Marsaglia and co-workers. An early version of it appeared in one
of Knuth’s The Art of Computer Programming book.[4]

Ziggurats were a form of temple common to the Sumerians, Baby-
lonians and Assyrians. The earliest examples date from the end of

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 7

the third millenium BC, the latest from the 6th century, BC. The zig-
gurat was a step-like pyramidal structure, Notable examples are the
ruins at Ur and Khorsabad in Mesopotamia (in today’s Iraq). Step
Pyramids resembling ziggurats were built by the Egyptians and the
Mayan people of Central America. Mathematically ziggurats resem-
bles a two-dimensional step function. The ziggurat algorithm here is
based on the one-dimensional version of the structure.

The ziggurat method[5] is a highly efficient rejection method based
on covering the target density with a set of horizontal rectangles and
a bottom tail section. These sections are chosen so that it is easy
to choose uniform points and to determine whether they should be
retained or rejected.

We will illustrate the method for the case of n = 8 sections so
that diagrams are clearer to see. In practice 64, 128 or 256 sections
are used. The top 7 section are rectangles, and the bottom section
consists of a rectangular part with a strip tailing off to infinity. All
these 8 sections have the same area, v, so that it is easy to choose
one of the sections at random. Furthermore, 7 of the 8 section are
rectangles from which it is easy to to get a random point (x, y), and

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 8

further yet, for those rectangles, it is easy to decide if if (x, y) falls
below f(x). Because if the rightmost coordinates of the rectangles are
0 = x0 < x1 < x2 < . . . < x7, and rectangle Ri is selected, i > 0,
then the x-coordinate of a random point in Ri is uxi, where u is a
uniform deviate in (0, 1), and if x < xi−1 then the random point (x, y)
must be below f(x), confirming the acceptance of x without having to
generate y. Of course if x ≥ xi−1 then we have to generate y and and
compare it with f(x) to decide if that random point is to be accepted.
In practice we choose a large enough n so that xi−1/xi is only slightly
less than unity, so that x < xi−1 nearly most of the time.

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 9

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

To obtain a random point (x, y) from the base strip, which consists
of a rectangle with an adjoining infinite tail, we first define r to be the
rightmost xi, so that the tail corresponds to x > r. We may generate
from the base strip as follows: generate x = vu/f(r), with u uniform

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 10

in (0, 1). If x < x we then return x, else we return an x from the tail.
For the normal tail, we can use the Marsaglia[6] procedure: generate
x = − ln(u1)/r, y = − ln(u2) until y + y > x× x, then return r + x.

In most applications, uniform variates u are provided by floating
a random integer (32-bit unsigned long), one may save time by in-
corporating the float operation into the step that forms the x′s that
are to be returned. This can be done by forming the 32-bit integer
ki = 232(xi−1/xi), and setting wi = .532xi. For the special index
i = 0, set k0 = 232rf(r)/v and w0 = .532v/f(r). The Ziggurat
algorithm[5] can then be stated as follows.

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 11

The Ziggurat Algorithm
1. Generate a random 32-bit integer j and let i be the

index provided by the rightmost bits of j.

2. Set x = jwi. If j < ki return x.

3. If i = 0 return an x from the tail.

4. If [f(xi−1)− f(xi)]u < f(x)− f(xi), return x.

5. Go to step 1.

3.1. Setting up the Ziggurat

We have to first set up the ziggurat.[5] This is done only once during
the initialization part of the program. Given a probability density
f(x), we want to find n − 1 equal-area rectangles, and an equal-area
base strip consisting of a rectangle plus an infinite tail. The union of
these sections must cover entirely f(x), such as pictured in the figure.
Note that we have only shown the positive x portion of the curve.
It is also clear that we can work with the un-normalized probability
density function, so that we do not have to carry the normalization

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 12

factor, c. Clearly f(x) and v scale as c, and x1, x2, . . . and xn−1 = r
are independent of the scale.

Given an n, how does one find the common area v, and the right
edges of the rectangles: 0 = x0 < x1 < x2 < . . . < xn−1 = r. It is
clear from the figure that

xi[f(xi−1)− f(xi)] = v,

for i = 1, 2, . . . , n− 1. and

v = rf(r) +
∫ ∞

r

dx f(x).

Therefore we can define a function z(r) by the following steps.
First we set

v = rf(r) +
∫ ∞

r

dx f(x).

. Then for i from n − 1 by steps of -1 to 1, we compute xi =
f−1(v/xi+1 + f(xi+1)). Finally we return (v − x1 + x1f(x1)) as the
value of the function.

Then the problem is to find the value of r that makes z(r) = 0.

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 13

This root-finding task clearly has to be done numerically. It turns out
that the numerical work requires a bit of care. For r large, v is small,
all the xi can be computed readily, but z(r) is negative. However
when r small, v is relatively large, x1, x2, . . . become complex because
of the computation of f−1. For a given n, let r0 be the value of r at
which x1 is zero. Thus x1 becomes complex for r < r0.

When n is large (the usual case) the correct value for x1 lies very
close to zero. Thus for r very slightly below the correct, x1 become
complex and numerical computation runs into problems. This makes
finding the root somewhat difficult. It turns out that there is an
effective way to alleviate the problem.[7]

For n = 256, one finds that r = 3.654152885361009, and the
common area v = 0.00492867323399. The efficiency of the rejection
procedure, given by

e =

√
2π

2n

v
,

gives 99.33% for this n. Clearly the efficiency increases with increasing
n. The results for r, v and efficiency for various n are shown in the

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 14

following table.

n r v % efficiency
8 2.3383716982472524 1.7617364011877759e-1 88.93

16 2.6755367657376135 8.3989463747827300e-2 93.26
32 2.9613001212640193 4.0758744432219871e-2 96.09
64 3.2136576271588955 2.0024457157351700e-2 97.80

128 3.4426198558966519 9.9125630353364726e-3 98.78
256 3.6541528853610088 4.9286732339746571e-3 99.33
512 3.8520461503683916 2.4567663515413529e-3 99.64

The ziggurat algorithm was implemented and run-times were com-
pared with two other methods said to be fast. The ziggurat method
was found to be the fastest, faster than the runner-up by a factor of
three. MATLAB 6 in fact uses an older version of this algorithm to
generate normally distributed random numbers. A 800 MHz Pentium
laptop PC can generate over 10 million random numbers in less than
one second.

Toc JJ II J I Back J Doc Doc I



Section 3: The Ziggurat Method 15

References

[1] D. D. Wackerly, W. Mendenhall III, and R. L. Scheaffer, Mathe-
matical Statistics with Applications, Sec. 8.3, (Wadssworth Pub-
lishing, 1996). 5

[2] P. Bratley, B. L. Fox and E. L. Schrage, A Guide to Simulation,
(Springer-Verlag, New York, 1983 5

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery Numerical Recipes, Second Edition, (Cambridge University
Press, 1992). 5

[4] D. E. Knuth, The Art of Computer Programming: Volume 2,
Seminumerical Algorithms, Second Edition, (Addison Wesley,
Reading, MA, 1969). 6

[5] G. Marsaglia and W. W. Tsang, The ziggurat method for generat-
ing random variables, J. of Statistical Software, 5, p. 1-7 (2000).
7, 10, 11

[6] G. Marsaglia, Generating a variable from the tail of the normal
distribution, Technometrics, 6, p. 101-102 (1964). 10

Toc JJ II J I Back J Doc Doc I

http://www.nr.com


Section 3: The Ziggurat Method 16

[7] K. M. Leung, unpublished result.

13

Toc JJ II J I Back J Doc Doc I


	Table of Contents
	1 Introduction
	2 The Polar (box-Muller) Algorithm
	3 The Ziggurat Method
	3.1 Setting up the Ziggurat




