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Abstract: The Metropolis method is another method
of generating random deviates that are distributed ac-
cording to an arbitrary probability density function.
The basic ideas will be illustrated by applying the
method to evaluate an indefinite integral.
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1. Introduction

The Metropolis method introduced by Metropolis, Metropolis, Rosen-
bluth, Rosenbluth, Teller and Teller in 1953[1] is another method
of generating random deviates distributed according to a probability
density function, f(x). It is a general method that applies to any
arbitrary f(x), which need not be normalized. No prior knowledge of
the form of the distribution is required.

In the Metropolis method, we imagine a particle located initially
at x0 performs a kind of random walk within the domain [a, b]. Time is
discretized into finite steps. In each time step the particle attempts to
jump to a new randomly chosen position. There is a certain criterion,
which depends on f(x), that determines whether or not the jump is
allowed. The jump is made if it is allowed to do so, otherwise it is not
moved. The process is repeated numerous times. After many time
steps the particle will have forgotten where its starting position was.
The final N positions visited by the particles should be distributed
according to f(x). The above dynamics of this particle is totally
fictitious, and it is executed in a fictitious time step known as a Monte
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Carlo time step.

2. The Metropolis Method

To completely specify the algorithm of generating these random po-
sitions, we have to specify the random walk process and the criterion
for accepting or rejecting a certain move. The Metropolis method
is therefore a special importance sampling procedure that involves
accepting or rejecting certain possible sampling attempts.

Suppose the particle is currently located at x. We can consider
it jumping to a new position x′ given by x′ = x + ∆x, where ∆x is
randomly chosen in the interval [−δ, δ], and δ is a parameter of the
simulation. If the domain, [a, b], does not covers the entire real line,
additional care must be exercised to make sure that the particle does
not attempt to move outside the domain.

We also need to define a transition probability T (x → x′) for
accepting this trial move from x to x′ in such a way that the ultimate
distribution of the positions visited by the particle will be distributed
according to f(x). It can be shown that a sufficient (but not necessary)
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condition for the transition probability T (x→ x′) for moving from x
to x′ is the detailed balance condition:

f(x)T (x→ x′) = f(x′)T (x′ → x), (1)

where T (x′ → x) is the transition probability for moving from x′

to x. The detailed balance condition does not specify the transition
probability uniquely. There are still many ways of choosing T (x→ x′)
and T (x′ → x). A simple choice of T (x→ x′) that is consistent with
the detailed balance condition is:

T (x→ x′) = min
[
1,

f(x′)
f(x)

]
. (2)

Therefore if this trial position, x′, is such that f(x′)/f(x) is greater
than 1, meaning that this new position would increase the value
of f , then this move is accepted (with probability 1). However, if
f(x′)/f(x) is less than 1, and so this move would actually decrease
the value of f , then this move is still accepted, although with a lower
probability of f(x′)/f(x).

It is clear that the situation is totally symmetric between the po-
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sitions x and x′, and so the transition probability for moving from x′

to x is:

T (x′ → x) = min
[
1,

f(x)
f(x′)

]
. (3)

To see that the detailed balance condition holds for this choice
of transition probabilities, we assume first that f(x′)/f(x) is greater
than 1. Then according to Eq.(2), T (x → x′) is given by 1 and
T (x′ → x) is given by f(x′)/f(x). Consequently

f(x)T (x→ x′) = f(x) = f(x′)
f(x)
f(x′)

= f(x′)T (x′ → x), (4)

and so the detailed balance condition is obeyed.
On the other hand if f(x′)/f(x) is less than 1, then according to

Eq.(2), T (x → x′) is given by f(x′)/f(x) and T (x′ → x) is given by
1. Consequently

f(x)T (x→ x′) = f(x′) = f(x′)T (x′ → x), (5)

and so the detailed balance condition is also obeyed.
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2.1. Algorithm for the Metropolis Method

The Metropolis algorithm of generating points distributed accord-
ing to an arbitrary pdf f(x):

1. Choose parameters Nmax and δ, and set initial position x,
and N to 0.

2. Go through the following loop until N equals Nmax:
(a) Let trial position x′ = x + (2u1 − 1)δ, where u1 is a

uniform deviate.
(b) Compute the ratio r = f(x′)/f(x).
(c) If r ≥ 1, the move is accepted, x is replaced by x′, and

N is incremented by 1, otherwise
i. Choose another uniform deviate, u2.
ii. If u2 ≤ r, the move is accepted, x is replaced by x′,

and N is incremented by 1
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2.2. Choice of parameters of the method

We discuss here some of the finer details of the Metropolis algorithm
that have to do with the choices of parameters used in the simula-
tion. First consider the choice of the starting position for the random
walk. Notice that if the chosen initial position lies in a region where
f(x) is exceedingly small, it will take the random walker many steps
before reaching a region where f(x) is large. Therefore all the earlier
positions visited by the walker will all have small f and the probabil-
ity distribution of these points is far from that given by f(x). These
points are the results of this unfortunate choice of initial position and
thus are often discarded. In such a case the number of accepted points
generated by the random walk, Nmax, which is another parameter of
the simulation, has to be larger than the number of points we actually
want to obtain. Therefore the method is more efficient if the walker
starts from a position where f(x) is large. The set of points obtained
then more quickly approaches the asymptotic distribution f(x).

Another parameter we have to choose in the simulation is the
maximum step size δ. First suppose that δ is large. Most of the points
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visited in the random walk are located where the corresponding values
of f(x) are relatively large, because the visited points are supposed
to be distributed according to f(x). Taking a big step from these
positions will very likely end up with trial positions, x′, in regions
where f(x′) are very small compared with f(x). According to the
Metropolis algorithm these points are accepted with probability a
very small probability f(x′)/f(x). So most of the trials points end up
have to be rejected.

On the other hand if the maximum step size is very small, the
trials points x′ are then very close to the current point x. Of course
if the ratios r = f(x′)/f(x) are larger than 1, then the trial positions
are accepted. However even if r turn out to be smaller than 1, since
x′ are so close to x, r must be nearly 1, and these trial positions will
still be accepted with overwhelming probability. The sampling of the
entire probability distribution is therefore also not efficient. As a rule
of thumb, δ should be chosen so that roughly one third to a half of
the trials positions should be accepted.
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ASSIGNMENT 5 Problem 8 Compute the integral

I =
∫ 1

0

e−x2
dx, (6)

using the importance sampling method with a probability density
function f(x) = αe−x. Find the normalization constant α. Use the
inverse function method to generate non-uniform random deviates to
sample the integrand. Your estimated value for the integral should
be close to the exact value of π

2 erf(1) ≈ 0.746824132812427025, where
erf is the so-called Error function.
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