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1. Introduction

With a fixed number of trials N used in a Monte Carlo simulation,
the probable error in estimating the mean is proportional to the stan-
dard deviation, σ, and therefore can be decreased by decreasing the
variance. The variance is independent of N , but depends on the way
in which the simulation is carried out, as we saw earlier when we
computed the area of a circle. Techniques for reducing the variance
of a simulation are therefore important in reducing the error. They
are referred to as variance reduction (or importance sampling) tech-
niques. These techniques require judicial uses of non-uniform random
deviates, as we will discuss at length in the next chapter. The prob-
ability distribution densities of these non-uniform deviates are not
constants. We will discuss how to generate them from the uniform
random deviates in this chapter. [1, 2]

We consider a continuous random variable X whose values, x,
obey a probability density function f(x). By definition, f(x) must
be non-negative and must have unit area. The (cumulative) probabil-
ity distribution function, F (x), is defined in terms of the probability
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Section 2: Modeling a Discrete Random Variable 4

density by

F (x) =
∫ x

−∞
f(x) dx, (1)

and therefore the probability density function is given in terms of the
probability distribution function by differentiation

f(x) =
dF (x)

dx
. (2)

The task is to use the uniform deviates to generate random deviates
that are distributed according to any given probability density func-
tion f(x).

2. Modeling a Discrete Random Variable

We will first consider modeling discrete random variables here. Let X
be a discrete random variable whose values x are distributed according
to the following table:

x x1 x2 · · · xn

p(x) p1 p2 · · · pn
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Section 2: Modeling a Discrete Random Variable 5

with a fixed n. Normalization condition requires that
∑n

k=1 pk = 1.
To generate discrete random deviates with the above distribution,

we break up the interval [0, 1] into n segments with lengths p1, p2,
. . ., pn. A uniform deviate u is then picked. If u lies inside the k-th
interval, that is p1 + p2 + . . . + pk−1 < u < p1 + p2 + . . . + pk−1 + pk,
where we define p0 as 0, then we choose xk for the value of x.

In most computer languages, the above procedure can be imple-
mented using n nested-if-else statements:

if u < p1

x = x1

else if u < p1 + p2

x = x2

else if ...
...

else if u < p1 + . . . + pn−1

x = xn−1

else
x = xn
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Section 2: Modeling a Discrete Random Variable 6

Note that the precise ordering of these intervals does not matter
at all. However, we should put the larger intervals first to improve
the efficiency in the search. If n is very large, one may also want to
consider other alternate ways of searching for the right interval.[10]

For the special case of equal probabilities: pk = 1/n, for all k, we
pick the value xk if p1 +p2 + . . .+pk−1 < u < p1 +p2 + . . .+pk−1 +pk.
But p1+p2+. . .+pk−1 = (k−1)/n and p1+p2+. . .+pk−1+pk = k/n,
and so this condition is the same as k − 1 < nu < k. If we use
the notation [x] to denote the integer part of x, then the condition
becomes [nu] = k− 1. Therefore if the chosen uniform deviate is such
that [nu] + 1 = k then we should pick x = xk.

Some computer languages, such as C and C++, has built-in gener-
ators that produce random integers, I, varying between 0 and a large
global integer constant RAND MAX. In that case we can simply compute
k as 1 + I modulo n.
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3. The Inverse Function Method

The Inverse function method provides a general scheme for generat-
ing non-uniform random deviates from the uniform random deviates.
The method involves finding a certain indefinite integral and invert-
ing it to find its inverse function. We cannot expect to be able to
perform these steps analytically for any arbitrary probability distri-
bution. Fortunately there are a number of rather common forms of
density functions that are amenable to this method.

Let Y be a random variable whose values, y, are the uniform devi-
ates in the interval [0, 1]. We want to find a transformation from y to
x in such a way that the values of y are distributed according to the
probability density function f(x) of interest. We can obtain such a
transformation by first considering the probability P (y ≤ Y ≤ y+dy)
for finding Y having a value within the interval [y, y+dy]. Since y has
a uniform distribution, it is clear that P (y ≤ Y ≤ y + dy) = dy, the
width of that interval. Next we consider P (x ≤ X ≤ x + dx), which
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by definition is given by

P (x ≤ X ≤ x + dx) =
∫ x+dx

x

f(x) dx = f(x) dx. (3)

The second equality can be obtained by differentiating the upper limit
of the integral. However we must have

P (y ≤ Y ≤ y + dy) = P (x ≤ X ≤ x + dx), (4)

because each side of the equation represents exactly the same probabil-
ity although they are expressed in terms of different random variables.
Therefore we have the result[8]

dy = f(x) dx. (5)

Integrating both sides of this equation, yields a relationship expressing
y as a function of x:

y = F (x). (6)
The constant of integration here must be zero since both y and F (x)
must vary between 0 and 1.[9] Finally we must invert this relationship
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to obtain an expression for x in terms of y:

x = F−1(y), (7)

where F−1 is the inverse function of F .
Using this equation with uniform deviates, y, we can generate ran-

dom deviates, x, that are guaranteed to be distributed according to
the given probability density function f(x). However the above pro-
cedure requires one first to find F (x), but that involves performing an
indefinite integral over f(x). In addition, one has to find the inverse
function F−1 from F . These steps can be performed analytically only
for a few rather simple but sometimes useful probability density func-
tions. In those cases the method is very simple and very efficient.
For more general forms of f(x), we will have to resort to numerical
means.[5] In addition, other methods for generating non-uniform de-
viates often rely indirectly on the use of the inverse function method.
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3.1. Algorithm of the Inverse Function Method

The inverse function method for a given density function,
f(x) is:

1. Find the indefinite integral of f(x) to obtain F (x).

2. Find the inverse function of F to obtain F−1.

3. Values x = F−1(u) are distributed according to
probability density function f(x) if the u are uni-
form deviates.

3.2. Graphical Explanation of the Inverse Function
Method

It is actually very easy to understand how the inverse function method
works without using any mathematics. Recall that given a probabil-
ity density function f(x), the cumulative distribution function F (x)
gives the accumulated area under the f(x) curve from −∞ up to x.
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The curve of F (x) as a function of x is always monotonic increasing,
however it remains rather flat in a region where f(x) is small since
there is little area to add up. On the other hand in a region where
f(x) has a peak, F (x) picks up a lot of area quickly for the same
amount of increase in x, and so it increases rapidly with increasing x,
as shown in the figure.
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For each uniform deviate, u, the inverse function method produces
a value for x according to the formula

x = F−1(u). (8)
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Graphically this means that we locate the point u on the vertical
axis and find out where this point comes from on the horizontal axis
according to the function F (x). Now imagine randomly throwing
points between 0 and 1 on the vertical axis covering it uniformly and
finding where they land on the horizontal axis. It is clear that there are
many more points hitting the curve F (x) where it rises rapidly than
in the place where it remains rather flat. Therefore more points will
end up on the horizontal axis where the probability density function
f(x) is large compared with the places where it is small. This explains
why the resulting points x are distributed according to f(x).

3.3. Examples of the Inverse Function Method

We will use the the Inverse function method to generate some common
non-uniform deviates. Some of these random deviates will be of use
later in the treatment of variance reduction techniques in Monte Carlo
simulations.
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• Uniform Distributions
Our first example is a case in which x is restricted in the interval [a, b]
and the distribution density function f(x) = c = constant within the
interval, otherwise f(x) = 0. Normalization of f(x) requires that
c = 1/(b− a).

First we have to calculate F (x)

F (x) =
∫ x

−∞
f(x) dx =

1
b− a

∫ x

a

dx =
x− a

b− a
. (9)

Setting the value of a uniform deviate u equal to this F (x) and in-
verting the result to find x as a function of u gives

x = (b− a)u + a, (10)

which we obtained before when the uniform deviates are transformed
from the fundamental interval [0, 1] to the more general interval [a, b].
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• Exponential Distribution
Random deviates that are distributed according to an exponential
distribution density function

f(x) = ae−ax, (11)

for x ≥ 0, and f(x) = 0 for x < 0, can be generated using the inverse
function method as well. The probability distribution function can be
calculated:

F (x) = a

∫ x

0

e−ax = 1− e−ax. (12)

Setting this equal to a uniform deviate x and solving x in terms of u
gives

x = −1
a

ln(1− u). (13)

Because the numbers u are uniform deviates then so are the numbers
1− u, we can rewrite the above equation simply as:

x = −1
a

ln(u). (14)
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• Distribution Density Functions f(x) = (m + 1)xm

Distribution density function given by f(x) = αxm for x in [0, 1], and
f(x) = 0 otherwise. We will determine the normalization constant α
below.

F (x) = α

∫ x

0

xm dx = α

[
x(m+1)

m + 1

]x

0

= α
x(m+1)

m + 1
. (15)

In order to satisfy the normalization condition F (1) = 1 we must have
α = m + 1.

We pick a uniform deviate u and set

u = F (x) = xm+1. (16)

This relation is then solved for x in terms of u:

x = u1/(m+1). (17)

This formula enables us to generate random deviates x that are dis-
tributed with the prescribed density function.

Also note that for this distribution, the exact mean can be calcu-
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lated:

E(X) = (m + 1)
∫ 1

0

xm+1 dx =
m + 1
m + 2

, (18)

and so is the exact value of the mean of X2:

E(X2) = (m + 1)
∫ 1

0

xm+2 dx =
m + 1
m + 3

. (19)

Therefore the exact variance is given by

V (X) = E(X2)− (E(X))2 =
m + 1

(m + 3)(m + 2)2
. (20)

We can use these exact values for the mean and variance to check
the properties of random deviates generated by the inverse function
method, as well as other methods.

4. Superposition Method

The superposition (or also known as the composition) method [1, 4]
can be applied to a probability distribution function F (x) that can
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be written as a superposition of two or more probability distribution
functions, F1(x), F2(x), . . . , Fm(x) so that

F (x) =
m∑

k=1

ckFk(x), (21)

where all ck > 0 and
∑m

k=1 ck = 1. The method is useful if random
variables with probability distribution function Fk(x) can all be easily
modeled, for example, using the inverse functions F−1

k (u), where u is
a uniform deviate.

The generation of random deviates that are distributed according
to probability function F (x) relies on the use of a discrete random
integer variable, Q, whose values, q, obey the following distribution

q 1 2 · · · m
p(q) c1 c2 · · · cm

in other words
P (Q = k) = ck. (22)

In this method, a random deviate u1 is first used to select randomly
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an integer from 1 to m as the value of Q. If the chosen integer is k, then
the inverse function for Fk(x) is used to produce a random deviate

x = F−1
k (u2), (23)

where u2 is another uniform deviate. The resulting random deviates
x will then be distributed according to the probability distribution
function F (x).

Note that by differentiating Eq.(21) with respect to x, we have

f(x) =
d

dx
F (x) =

d

dx

m∑
k=1

ckFk(x) (24)

=
m∑

k=1

ck
d

dx
Fk(x) =

m∑
k=1

ckfk(x).
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4.1. Algorithm for the Superposition Method

The algorithm for the Superposition Method is:
1. Randomly pick an integer from 1 to m according

to the probability given in the table for the discrete
variable Q, for example using the method we dis-
cussed earlier. Denote this chosen integer by k.

2. Choose a random deviate u2.

3. A random deviate x is then given using the inverse
function method by F−1

k (u2).

4.2. Proof of the Superposition Method

We assume that the probability distribution function F (x) can be
written as a superposition of m probability distribution functions,
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F1(x), F2(x), . . . , Fm(x) so that

F (x) =
m∑

k=1

ckFk(x), (25)

where all ck > 0 and
∑m

k=1 ck = 1. Let u be a uniform deviate, and
x be any real value. We want to consider the probability that the
discrete random variable Q takes on an integer value such that u <
FQ(x). Because of the monotonicity of the probability distribution
functions and their inverse functions, that probability is the same as
P (F−1

Q (u) < x). We can express it in terms of a sum of conditional
probabilities:

P (F−1
Q (u) < x) =

m∑
k=1

P (F−1
Q (u) < x | Q = k)P (Q = k), (26)

because Q takes on the values 1, 2, . . . ,m with corresponding proba-
bilities P (Q = k). Note that

P (F−1
Q (u) < x | Q = k) = P (F−1

k (u) < x) (27)

Toc JJ II J I Back J Doc Doc I



Section 4: Superposition Method 22

and
P (F−1

k (u) < x) = P (u < Fk(x)) = Fk(x). (28)
This last equality holds because u is a random deviate between 0 and
1, and Fk(x) is a probability.

4.3. Example of the Superposition Method

When low energy photons (light) are scattered by slowly moving elec-
trons, the scattering angle θ is a random variable. The scattering
angle measures the change in the angle between the direction of the
incident photon and that of the scattered photon. The cosine of the
angle X = cos θ has values y obeying Rayleigh’s law:

f(x) =
3
8
(1 + x2), for− 1 ≤ x ≤ 1. (29)

If we use the inverse function method here then we need to calculate

F (x) =
∫ x

−1

3
8
(1 + x2) dx =

3
8

[
x +

x3

3

]x

−1

(30)

=
1
8
(x3 + 3x + 4).
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However finding the inverse function F−1 requires the solving of a
cubic equation.

Instead we will use the superposition method. We need to de-
compose p(y) into a linear combination of the two probability density
functions f1(x) = α1 and f2(x) = α2x

2, where α1 and α2 are con-
stants to be determined from normalization. Normalization of f1(x)
means that ∫ 1

−1

α1 dx = 2α1 = 1, (31)

and so α1 = 1
2 and f1(x) = 1

2 . Similarly normalization of f2(x) means
that ∫ 1

−1

α2x
2 dx = α2

[
x3

3

]1

−1

=
2
3
α2, (32)

and so α2 = 3
2 and f2(x) = 3

2x2 . We want to write

f(x) = c1f1(x) + c2f2(x), (33)

and so
3
8
(1 + x2) =

c1

2
+

3
2
c2x

2. (34)
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Equating terms having the same powers of x gives c1 = 3
4 and c2 = 1

4 .
Coefficients obtained this way always obey the normalization condi-
tion

∑m
k=1 ck = 1 since each individual probability density function

in Eq.(33) is normalized.
Next we integrate these probability density functions to find the

probability distribution functions:

F1(x) =
∫ x

−1

1
2

dx =
1
2
(x + 1). (35)

F2(x) =
∫ x

−1

3
2
x2 dx =

1
2
(x3 + 1). (36)

If u2 is a uniform deviate and we set u2 = F1(x) = (x + 1)/2, we get
x = 2u2−1. On the other hand if we set u2 = F2(x) = (x3 +1)/2, we
get x = (2u2−1)1/3. Therefore to generate random deviates according
to the probability density function f(x), we pick two uniform deviates,
u1 and u2, and let

x =
∖
\– 2u2 − 1, if u1 < 3

4

(2u2 − 1)1/3, if u1 > 3
4

(37)
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5. The Generalized Rejection Method

We discuss here the generalized rejection method for generating ran-
dom deviates distributed with any given probability density function
f(x). The method is based on the following important observation. In
the graph of f(x) versus x, if we can generate points covering up the
area under the curve uniformly, then the x-coordinates of these points
will have values distributed with the probability density function f(x).

For an arbitrary form of f(x), generating these points is non-
trivial. In the generalized rejection method, a comparison function
w(x) is chosen such that w(x) ≥ f(x) for all x within the domain of
interest. We also want to choose this comparison function so that the
indefinite integral

W (x) =
∫ x

−∞
f(x) dx (38)

can be calculated analytically, and is analytically invertible to obtain
W−1. Note that since f(x) is normalized, therefore w(x) is not nor-
malized. In fact the area underneath w(x), which we denote by A,
must be larger than 1.
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To generate random deviates x with the probability density func-
tion f(x), we first use uniform deviates u to produce random numbers
Au that are uniformly distributed in the interval [0, A] along the ver-

Toc JJ II J I Back J Doc Doc I



Section 5: The Generalized Rejection Method 27

tical axis. The corresponding values of x on the horizontal axis are
found using x = W−1(Au). For each of the values of x, a value of y
is picked randomly and uniformly between 0 and w(x). Clearly the
points whose coordinates are given by (x, y) are uniformly distributed
in the area under w(x).

Next we must reject those points whose values of y lie above f(x).
The numbers obtained from the x-coordinates of the points that are
retained will then be distributed with probability density f(x).

The ratio of the number of points retained to the total number of
points used to generate them in this method is called the efficiency,
e. The value of e is therefore given by

e =

∫∞
−∞ f(x) dx∫∞
−∞ w(x) dx

=
1
A

. (39)

Consequently in order for the method to be efficient A should be only
slightly larger than unity. That means that the comparison function
w(x) should only be slightly larger than f(x) within the domain of
interest.

The efficiency is unity for the special case in which we choose w(x)
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equal to f(x). No point is then rejected. However the method then
becomes exactly the inverse function method, that means that we
need to be able to find F (x) and to invert it.

A simple but clearly not an optimal choice is to use a constant
function given by w(x) = max f(x) = M in the domain. This method
becomes the original rejection method of von Neumann, and is ba-
sically the same as the Hit-Or-Miss method. The efficiency of von
Neumann’s rejection method is e = 1/((b− a)M).
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5.1. Algorithm for the Generalized Rejection Method

The procedure for the generalized rejection method is summarized
below.

1. Set N , the total number of random deviates wanted, to a
large integer.

2. Initialize an integer, N ′ to 0.

3. Go through the following loop until N ′ = N :
(a) Get a uniform deviate u1 and compute Au1.
(b) Let x = W−1(Au1).
(c) Get another uniform deviate u2 and let y = u2w(x).
(d) If y < f(x), retain the value of x and increment N ′ by

1, otherwise reject the point (x, y).
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5.2. Example of the Generalized Rejection Method

We will apply the Generalized Rejection method to generate random
deviates distributed with the probability density function

f(x) =
v(x)
xα

, for 0 ≤ x ≤ 1, (40)

where the function v(x) has a maximum vm and must be such that
f(x) is normalized to unity. The parameter α must be restricted so
that α < 1.

We can choose a comparison function

w(x) =
vm

xα
, (41)

which is clearly larger than f(x) for x in [0, 1]. Moreover, we can
analytically obtain

W (x) =
∫ x

0

vm

xα
dx =

vm

1− α
x1−α. (42)

At x = 1, W (1) = vm

1−α = A, the area under w(x). Therefore

W (x) = Ax1−α. (43)
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We pick a uniform deviate u1 and let Au1 = W (x). Inverting this
gives x = u

1/(1−α)
1 . We pick another uniform deviate u2 and keep this

value for x if
w(x)u2 < f(x), (44)

which is the same relation as

vmu2 < v(x), (45)

or
vmu2 < v(u1/(1−α)

1 ). (46)
Although the parameter α can be negative, the above example is

most useful when 0 < α < 1 and v(x) is non-zero at x = 0. Then
f(x) diverges at x = 0, but in such a way that it has unit area as
required. The use of the comparison function w(x) = vmx−α, which
itself is divergent at 0, allows us to take care of the divergence of f(x)
at 0. The remaining part, described by v(x), has a smoother behavior
and therefore can be modeled more accurately.

Toc JJ II J I Back J Doc Doc I



Section 5: The Generalized Rejection Method 32

References

[1] Ilya M. Sobol, A Primer for the Monte Carlo Method, (CRC
Press, 1994). 3, 17

[2] D. E. Knuth, The Art of Computer Programming: Vol. 2: Semi-
numerical Algorithms, Second Edition, (Addison Wesley, 1981).
3

[3] J. Banks, J. S. Carson II, B. L. Nelson, and D. M. Nicol, Discrete-
Event System Simulation, Third Edition, Ch. 8 (Prentice Hall,
2000).

[4] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis,
(McGraw-Hill, New York, 2000). 17

[5] P. Bratley, B. L. Fox and E. L. Schrage, A Guide to Simulation,
(Springer-Verlag, New York, 1983).

[6] L. Devroye, Non-Uniform Random Variate Generation,
(Springer-Verlag, New York, 1986). 9

Toc JJ II J I Back J Doc Doc I



Section 5: The Generalized Rejection Method 33

[7] D. D. Wackerly, W. Mendenhall III, and R. L. Scheaffer, Mathe-
matical Statistics with Applications, Sec. 8.3, (Wadssworth Pub-
lishing, 1996).

[8] This is actually a special form of the transformation law for prob-
abilities. In general, if random variable Y has values y distributed
with probablitiy fy(y), and if Y is transformed to a new random
variable X via the relation X = T (Y ), where T is some kind of
transformation function, then X will have values x distributed
according to probability density function fx(x) which obeys the
relation:

|fx(x) dx| = |fy(y) dy|
See, for example, D. D. Wackerly, W. Mendenhall III, and R.
L. Scheaffer, Mathematical Statistics with Applications, p. 267,
(Wadssworth Publishing, 1996).

[9] Of course we can also have chosen the opposite sign so that−dy =
f(x) dx, which applies if x decreases while y increases, and vice
versa. In that case there is an integration constant which must be
chosen to give the result 1− y = F (x). But since y is a uniform

Toc JJ II J I Back J Doc Doc I



Section 5: The Generalized Rejection Method 34

deviate in the interval [0, 1], so is 1 − y, and so the resulting
transformation between y and x is essential unchanged. 8

[10] D. E. Knuth, The Art of Computer Programming: Vol. 3:
Sorting and Searching, Ch. 6, (Addison Wesley, 1973).

8
6

Toc JJ II J I Back J Doc Doc I


	Table of Contents
	1 Introduction
	2 Modeling a Discrete Random Variable
	3 The Inverse Function Method
	3.1 Algorithm of the Inverse Function Method
	3.2 Graphical Explanation of the Inverse Function Method
	3.3 Examples of the Inverse Function Method
	• Uniform Distributions
	• Exponential Distribution
	• Distribution Density Functions f(x) = (m+1) xm 


	4 Superposition Method
	4.1 Algorithm for the Superposition Method
	4.2 Proof of the Superposition Method
	4.3 Example of the Superposition Method

	5 The Generalized Rejection Method
	5.1 Algorithm for the Generalized Rejection Method
	5.2 Example of the Generalized Rejection Method




