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1. Introduction

As we have seen, the use of N points uniformly random points in
Monte Carlo simulations leads to an error term that decreases as
N−1/2. Each new point sampled adds linearly to an accumulated sum
that will become the function average. But each of these points also
adds linearly to an accumulated sum that will become the variance.
The estimated error comes from the square root of this variance, hence
the power N−1/2. This convergence rate is often not high enough to
produce sufficiently accurate results.

By changing the way how these points are sampled, we can avoid
this inverse square root convergence. As an example, we can choose
sample points that lie on a rectangular grid, and to sample each point
exactly once in a certain order. The Monte Carlo simulation then
follows a deterministic scheme and the fractional error then decreases
much faster, at least as fast as N−1.

The problem with a grid is that one has to decide in advance how
fine it should be. It is inconvenient to ”sample until” some conver-
gence or termination condition is met. Is there an intermediate scheme
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for picking sample points ”at random”, yet spread out in some self-
avoiding way, lowering the chance that clustering may occurs with
uniformly random points.

The answer to the above question is ”yes”. Sequences of n-tuples
that are generated in a deterministic fashion and fill up space more
uniformly than uncorrelated random points are called quasi-random
sequences. The sample points in the sequence are designed to ”max-
imally avoid” each other. These sequences are also known as low
discrepancy sequences. There are variations in the definition of dis-
crepancy. They represent ways to quantify the notion of deviation
from uniform distribution, or in other words, for the irregularity in
the distribution.

2. Van der Corput Sequence

The simplest example is van der Corput’s sequence.[1] We start by
choosing an integer b ≥ 2 as the base. Then the jth number Hj in
the sequence is obtained by the following steps:

1. Express j as a number in base b.
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2. Reverse the digits and put a radix point (i.e., a decimal point
in base b) in front of the digits. The result is Hj in base b.

3. Then convert Hj back to the decimal system.
These numbers Hj , j = 0, 1, · · · gradually fill up the interval from 0
to 1.

As an example, suppose we choose a base b = 3 and want to obtain
the j = 17 number in the van der Corput sequence. First we note that
17 can be expressed as 1× 32 + 2× 31 + 2× 30, and so 17 is given by
122 in base 3. Reversing the digits and putting a radix point in front
gives Hj = 0.221 in base 3. Converting the number back to decimal
number gives 2× 3−1 + 2× 3−2 + 1× 3−3 = 25

27 .
The following table shows the first 18 van der Corput numbers in

base 3. Column 1 is the representation of j in the decimal system.
Column 2 is it’s representation in base 3. The j-th van der Corput
number in base 3 is given in column 3. Finally in column 4 is the j-th
member in the van der Corput sequence.

Toc JJ II J I Back J Doc Doc I



Section 2: Van der Corput Sequence 6

j (decimal) j (base 3) Hj (base 3) Hj (decimal)
0 0 0.0 0
1 1 0.1 1/3
2 2 0.2 2/3
3 10 0.01 1/9
4 11 0.11 4/9
5 12 0.21 7/9
6 20 0.02 2/9
7 21 0.12 5/9
8 22 0.22 8/9
9 100 0.001 1/27
10 101 0.101 10/27
11 102 0.201 19/27
12 110 0.011 4/27
13 111 0.111 13/27
14 112 0.211 22/27
15 120 0.021 7/27
16 121 0.121 16/27
17 122 0.221 25/27
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It is not hard to see how the van der Corput sequence works:
Every time the number of digits representing j increases by one place,
j’s digit-reversed fraction becomes a factor of b finer-meshed. Thus
the process is one of filling in all the points from 0 to 1 on a sequence
of finer and finer Cartesian grids – and in a kind of maximally spread-
out order on each grid (since for example the most rapidly changing
digit in j controls the most significant digit of the fraction).

3. More Detailed Description

Let b ≥ 2 be an integer. Any integer n ≥ 0 can be expressed in base
b notation as

n = djdj−1 · · · d1d0(base b) = djb
j + · · ·+ d1b + d0

where di is an integer ≥ 0 and ≤ b− 1, for i = 0, 1, . . . , j.
Define the radical inverse function

φb(n) = 0.d0d1 · · · dj(base b) =
d0

b
+

d1

b2
+ · · ·+ dj

bj+1
,

which provides a 1-1 map between the set of natural numbers and the
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set of rational numbers in [0, 1). The van der Corput sequence in base
b is then the sequence: φb(n) for n = 0, 1, . . ..

To obtain φb(n + 1) from φb(n) we need to add 1
b = 0.1(base b)

to φb(n) with a rightward carry, i.e. a carry in the opposite direction
than that in the usual addition.

The s-dimensional Halton sequence is defined as

xn = (φb1(n), φb2(n), · · · , φbs
(n)), n = 0, 1, · · · ,

where b1, b2, · · · , bs are pairwise prime numbers greater than 1. They
are often chosen to be the first s prime numbers starting from 2.

For example in 2 dimension, we use s1 = 2 and s2 = 3 to generate
the Halton sequence. The first 10 points of the sequences are
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2
,
1
3
), (
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3
), (
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4
,
1
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9
), (
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16
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We now generate 1000 quasi-random points in the 2-dimensional
Halton sequence and plot them in the following diagram. For compar-
ison reasons, points generated by pseudo-random number generators
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are also shown. We see that the usual pseudo-random numbers have
a much stronger clustering effect than numbers from the Halton’s se-
quence. We also check and find that the numbers from the Halton
sequence have a much smaller variance than from the pseudo-random
numbers. Recall that the theoretical value for the variance should be
1/12 ≈ 0.8333333.
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4. The N-element Hammersley Point Set

The N-element Hammersley point set in the bases b1, · · · , bs−1, each
bi ≥ 2, is defined for n = 0, 1, · · · , N − 1 as

xn = (
n

N
, φb1(n), φb2(n), · · · , φbs−1(n)).

For example, the 2-dimensional 10-element Hammersley point set con-
tains
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5. More General Halton Sequences

Since sequences used in quasi-Monte Carlo are deterministic, it is not
possible to use the Central Limit Theorem for error estimation as
is done in Monte Carlo. It is desirable to develop techniques which
combine the potential high accuracy of quasi-Monte Carlo with the
practical error estimation ability of Monte Carlo. By introducing
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some randomness in low discrepancy sequences, one can use statistical
methods for error analysis. Confidence interval can be obtained using
the Central Limit Theorem.

Any number x ∈ [0, 1] can be written as

x =
∞∑

k=0

uk

bk+1
,

where uk is an integer in 0, 1, · · · , b − 1. Define the rightward carry
addition ⊕ so that

x⊕ 1
b

=
um + 1
bm+1

+
∑
k>m

uk

bk+1
,

where m is the first k in which uk 6= b− 1.
For example,

(0.11101101)2 ⊕
1
2

= (0.00011101)2

(0.2210012)3 ⊕
1
3

= (0.0020012)3.
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Next, the Von Neumann-Kakutani transformation of x is defined
to be

Tb(x) = x⊕ 1
b
.

The operator Tb is called the Von Neumann-Kakutani transformation.
It is a piecewise linear mapping from the interval [0, 1] to itself.

This transformation is then used to define a sequence xn, n =
0, 1, · · · recursively:

xn+1 = Tb(xn),
with a given starting point x0 ∈ [0, 1]. Let us denote the n-th iteration
of Tb by Tn

b :

Tn
b (x) =

{
x, n = 0
Tb(Tn−1

b (x)), n ≥ 1.

Note that if x0 = 0, the sequence is precisely the van der Corput
sequence. However if x0 = 0.d0d1 · · · dj(base b), and so if we denote
the integer m0 = dj · · · d1d0 in base b, then we have x0 = φb(m0)
and Tn

b (x0) = φb(m0 + n) for n = 1, 2, · · · . The sequence Tn
b (x0) for

n = 0, 1, · · · is the original van der Corput sequence skipping the first
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m0 terms.

6. Generalization to Higher-Dimensions

The above discussion can be generalized straightforwardly to higher
dimensions. If b1, b2, · · · , bs are relative prime numbers greater than
1, then we can let x0 = (x0,1, x0,2, · · · , x0,s) define the sequence xn =
(xn,1, xn,2, · · · , xn,s) for n = 1, 2, · · · by

xn+1,i = Tbi(xn,i), i = 1, 2, · · · , s.

In vector notation we write xn+1 = T(xn). The n-th iteration of T is
denoted by Tn = (Tn

b1
, Tn

b2
, · · · , Tn

bs
)

x0 is the start point of the sequence. The original Halton se-
quence results if x0 = 0. If x0 = (x0,1, x0,2, · · · , x0,s) with x0,i =
0.d0,id1,i · · · dki,i (base b), then letting integer m0,i = dki,i · · · d1,id0,i

(base b), the sequence

Tn(x0) = (φb1(m0,i + n), · · · , φbs
(m0,s + n)), n = 0, 1, · · · ,

is then the skipped Halton’s sequence.
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For any start point x0, the sequence Tn(x0), for n = 0, 1, · · · ,
is a deterministic low discrepancy sequence. In actual computation
with finite precision, each such sequence is actually a skipped Halton
sequence

7. Random-Start Halton Sequence

Let x0 = (x0,1, x0,2, · · · , x0,s) be a random vector with uniform dis-
tribution on [0, 1]s. The sequence xn ∈ [0, 1]s defined by

xn = Tn((x0) = (Tn
b1(x0,1), · · · , Tn

bs
(x0,s)), n = 0, 1, · · · ,

is called a random-start Halton sequence. Each random-start Halton
sequence is a low discrepancy sequence. Such randomization preserves
the uniformity of the Halton sequence. Multiple sequences with ran-
domized start point will be used for error estimation.
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8. Further Remarks

1. Very often the uniformity of the various low discrepancy se-
quences can be reduced further by permuting the digits in the
digits expansion.

2. There are other low discrepancy sequences, such as those of
Sobol and Faure.

3. More recent ones are based on the so called(t, m, s)−nets and
(t, s)-sequences and the digital method for their construction.[3]
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