POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

PSEUDORANDOM NUMBER
GENERATORS

K. Ming Leung

Directory
e Table of Contents
e Begin Article

Copyright (© 2000 mleung@poly.edu
Last Revision Date: January 25, 2004

mailto:mleung@poly.edu

N =

L

Table of Contents

. Introduction
. A wish-list for random numbers
. Linear congruential generators

3.1. Remarks on linear congruential generators
3.2. Explore some toy models

3.3. Marsaglia phenomenon

Mersenne Twister: A Much Better Generator

. Monte Carlo Simulation

5.1. Introduction to Monte Carlo Simulations

5.2. A Simple Example of Monte Carlo Simulation
5.3. Errors in Stochastic Simulations

5.4. Main Advantage of Computer Simulation

Section 1: Introduction 3

1. Introduction

Random numbers are used in many computer applications:

1.

6.

Computer simulation - internet traffic, customers arriving at a
bank to be serviced

. computer programming - as source of data for testing the effec-

tiveness of computer algorithms

sampling - to provide insight into some questions without ex-
amining all possible cases

decision making - completely unbiased decision making is useful
in some computer algorithms

numerical analysis - some numerical problems can be solved us-
ing random numbers

recreational games

After all most things in nature tend to be somewhat stochastic.
The configuration of phone calls handled by a given phone company
at any given time is certainly rather random. One certainly cannot

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 1: Introduction 4

expect the same configuration to occur at any other time. Even cars
made at a given manufacturing plant are to a certain degree different.

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 2: A wish-list for random numbers 5

2. A wish-list for random numbers

For many applications, we need to use floating-point numbers that lie
within the range 0 to 1, with any one number in the range just as
likely as any other. These numbers are uniformly distributed from 0
to 1. They are referred to as uniform deviates or variates. We will
denote them by w.

A computer is a deterministic machine and so can never produce
numbers that are truly random. [Actually being truly random is
not a very well-define concept.] A computer can only represent a
finite number of numbers and so as one keeps on generating more
and more "random” numbers, eventually the numbers have to repeat
themselves. Thus the generators of these "random” numbers are often
referred to as pseudorandom number generators.

Ideally we want the numbers generated to have the following char-
acteristics:

1. numbers should be distributed uniformly between 0 and 1 with-
out large ”gaps”

2. sequence of numbers generated should be as independent from

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 2: A wish-list for random numbers 6

each other as possible

3. mean or average of the numbers generated should be as close to
3 as possible
1

4. the variance should be as close to 15 as possible

5. should have little cyclic variations, i.e. free from the following
problems:
(a) autocorrelation between numbers
(b) numbers successively higher of lower than adjacent num-
bers
(c) several numbers above the mean followed by several num-
bers below the mean

6. numbers should have a long cycle

7. numbers should be replicable, i.e. the same starting condition
should yield the same sequence of numbers (for debugging and
comparison reasons)

8. routine that generates these numbers should be extremely fast
but should require very little memory

9. the generator should be portable

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 3: Linear congruential generators 7
3. Linear congruential generators

Most pseudorandom numbers generators use an iterative scheme for
integers, I,

I,+1=9(1,), n=0,1,... (1)
starting with a given seed Iy. Most functions for ® are undesirable for
generating pseudorandom numbers. A very common choice is a linear
function where modular arithmetics is to be performed. These gen-
erators are called linear congruential generators. The general scheme
has the form

Inyi=(al,+¢) modm, n=01,..., (2)

where a (the multiplier), ¢ (the increment or shift) and m (the mod-
ulus) are 3 integer constant parameters. The uniform deviates, wu,
are produced mathematically by dividing by m using floating-point
operation.

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 3: Linear congruential generators 8

3.1. Remarks on linear congruential generators

Linear congruential generators have the following general properties:

1. The scheme is very simple. It is reasonably fast and requires
little memory.

2. The choice of values for a, ¢, m and I sensitively affects the sta-
tistical properties of the numbers generated and the maximum
cycle length.

3. Uniform deviates generated do not continuously fill up the line
segment from 0 to 1. They are discrete and can only assume
values ffom the set 0, %, %, ceey % The smallest possible gap
size is —.

4. One can generate at most m distinct numbers before repeating
the same sequence of numbers, i.e. the maximum possible cycle
length is m. So m is often chosen to be the largest integer that
can be represented. For example on a 32-bit computer, one bit
is used for the sign bit and so the largest integer that can be
represented is 23! — 1 ~ 2 billion. We can easily run out of
numbers on today’s computers.

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 3: Linear congruential generators 9

5. The modulus operation with m can be conducted efficiently if
m is an integer power of 2 by saving only the rightmost digits.
For example if m = 2¥, then we save only the k rightmost digits.

6. Not too difficult to have situations when successive numbers are
used in such a way that conflicts with the generating algorithm.
For example, Statistically, it happens one time in a million that
a number generated is less than 1076, If ¢ = 7° = 16807 and
m = 231 — 1, then this number will always be followed by a
number less than 107 % 16807 ~ 0.0168.

A good choice of parameters due to Parker and Miller has ¢ = 0,
a = 7° = 16807 and m = 23! — 1. There are other two choices:
a = 48271 and 69621, with the same m. No other choices should be
used!

3.2. Explore some toy models

To gain some insights into these linear congruential generators, let us
consider the one having parameters: ¢ =0, a = 13, and m = 2% = 64.

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 3: Linear congruential generators 10

Using Iy = 1 as seed, the following sequence of 16 pseudorandom in-
tegers is generated: 1,13,41,21,17,29,57,37,33,45,9,53,49, 61,25, 5.
After that the sequence repeats itself. The cycle length is therefore
16. Starting with 1, every 4th integer appears in the sequence. The
gap size is 4/64 = 1/16 = 0.0625. [Remember that these random
integers have to be divided by m to produce the random variates.

If Iy = 2 is used as seed, the following sequence of 8 random
integers is obtained: 2,26, 18,42, 34, 58,50, 10. Starting with the seed,
every 8th integer appears in the sequence. The cycle length is 8 and
the gap size is 8/64 = 1/8 = 0.125.

The following sequence is obtained for a seed of 3: 3,39, 59,63, 51, 23, 43

The cycle length is 16 and the gap size is 4.

Finally with a seed of 4, we have the sequence: 4,52, 36, 20. Start-
ing with the seed, every 16th integer appears in the sequence. The
cycle length is only 4 and the gap size is 4/16 = 1/4 = 0.25.

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 3: Linear congruential generators 11
3.3. Marsaglia phenomenon

In 1968, Marsaglia points out in an article a major weakness of linear
congruential generators: successive overlapping sequences of n num-
bers all fall on at most (n!m)'/™ parallel hyperplanes. The title of
the article is ”Random Numbers Fall Mainly in the Planes”. (Re-
call a song in the play or movie: "My Fair Lady”, with one of the
best-known lines in the show: ”The rain in Spain stays mainly in the
plain.”)

Assuming that m = 23!, the maximum number of hyperplanes for
a given n is shown in the following table.

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 3: Linear congruential generators 12
(n!m)*/»
231
216
2344
476
192
108
73
55
45
39

To illustrate the Marsaglia phenomenon, we use the linear congru-
ential method with parameters a = 6, ¢ = 0, and m = 11. We obtain
the following sequence of integers starting with a seed of 1: 1, 6, 3, 7,
9, 10, 5, 8, 4, and 2. After integer 2, the sequence of integers repeats.
We label this sequence of 10 (=N) integers by Iy, I1,...,Is. They
appear to be rather random.

However if we plot points I,,_1 versus I,, for n = 1,2, ..., 10, where

O OO U WwWN S

—_

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 3: Linear congruential generators 13

I1p is taken to be the same integer as Iy, we generate the follow two
dimensional plot.

10 O—
®
)
5 ®
°
®
, LT

0 5 10

It is clear that all these numbers lie within only two ”planes” in this
two dimensional space.

Professor Alain Bellerive has written a nice Java applet Java applet
that demonstrates the Marsaglia phenomenon.

Toc <4< | d 2 | | 4 Back <« Doc Doc »

http://www.physics.carleton.ca/courses/75.502/slides/java/RandomApplet/RandomApplet.html

Section 4: Mersenne Twister: A Much Better Generator 14

4. Mersenne Twister: A Much Better Generator

So far the best pseudorandom number generator seems to be the
Mersenne Twister developed by Makoto Matsumoto and Takuji Nishimura
during 1996-1997. Mersenne Twister has the following merits:

1. It is designed with consideration on the flaws of various existing
generators.

2. Far longer period and far higher order of equidistribution than
any other implemented generators. (It is proved that the pe-
riod is 2199371 and 623-dimensional equidistribution property
is assured.)

3. Fast generation. (Although it depends on the system, it is re-
ported that Mersenne Twister is sometimes faster than the stan-
dard ANSI-C library in a system with pipeline and cache mem-
ory.)

4. Efficient use of the memory. (The implemented C-code mt19937.c
consumes only 624 words of working area.)

5. The algorithm is coded into many modern languages and can

Toc <4< | d 2 | | 4 Back <« Doc Doc »

http://www.math.keio.ac.jp/~matumoto/emt.html

Section 5: Monte Carlo Simulation 15

be freely downloaded.

5. Monte Carlo Simulation

We will be studying at some depth about Monte Carlo simulation
methods. We begin here with some introductory remarks and follow
by a concrete simple illustration how such methods can be used in
computer simulations.

5.1. Introduction to Monte Carlo Simulations

Stochastic simulation is often a very power method for solving cer-
tain types of mathematical problems. Stochastic simulation methods
attempt to mimic or replicate the behavior of a system by exploiting
randomness to obtain a statistical sample of possible outcomes. Be-
cause of the randomness involved, these methods are also commonly
known as Monte Carlo methods. They are useful for studying:
1. nondeterministic (stochastic) processes such as nuclear reactions
(Monte Carlo methods were actually invented for the develop-
ment of atomic weapons)

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 5: Monte Carlo Simulation 16

2. deterministic systems that are too complicated to model ana-
lytically

3. deterministic problems whose high dimensionality makes stan-
dard discretizations infeasible (for example Monte Carlo inte-
gration).

The two main requirements for using stochastic simulation meth-

ods are:
1. knowledge of relevant probability distributions

2. a good supply of random numbers for making random choices

Knowledge of the relevant probability distributions depends on
theoretical or empirical information about the physical system being
simulated. As a simple example, in simulating a baseball game the
known batting average of a player might determine the probability
that the player gets a hit in a given turn at bat.

5.2. A Simple Example of Monte Carlo Simulation

Imagine we have a circular rug of radius r that fits snugly inside a
room of dimension 2r by 2r in the attic of a house. The room is

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 5: Monte Carlo Simulation 17

rather dusty and the floor as well as the rug is covered by a thin but
uniform layer of dust particles. If we know that the total number of
dust particles in the room is N, and out of those IV particles we have
N’ particles covering the rug, thus we have a way of computing the
value of 7.

2
N

Assuming that each dust particle lands anywhere in the room with
equal probability, the ratio of N’ to N must be the same as the ratio

y
2r

2r X

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 5: Monte Carlo Simulation 18

of the area of the rug to the area of the entire room. Thus we have

N =T (@
N (2r)? 4
and so N
=4— 5
=4 (5)

This suggests a way of computing the value of 7 by performing the
following simulation. We take a speck of dust particle and throw it
randomly inside the room, making sure that it has an unbias chance
of landing anywhere inside. We have two counters, one for the number
of particle we through, and the other for the number of particle that
lands on the rug. We continue this process and stop after using up
all NV particles. The above formula then gives us an estimation of the
value of 7.

Thus we need to perform the following computation. Use the pseu-
dorandom number generator to obtain a uniform variate, u. We scale
it up by multiplying it by 2 so that the value lie randomly between 0
and 2 instead of between 0 and 1. We assign that value to be the x-

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 5: Monte Carlo Simulation 19

coordinate of a dust particle. We obtain another random variate from
the generator, and again multiply it by 2. This time we assign the
resulting value to be the y-coordinate of the particle. That particle
lands on the rug if (z — 1)? 4+ (y — 1)? < 1. In that case we increment
the counter N’ by 1, otherwise we repeat the process with another
particle. [Note that you can also compare /(z — 1)2 + (y — 1)? with
1, but the square root is really not necessary and it slows down the
program by roughly a factor of 2.]

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 5: Monte Carlo Simulation 20

Section 5: Monte Carlo Simulation 21

5.3. Errors in Stochastic Simulations

In addition to obtaining the quantity of interest, it is especially im-
portant in a computer simulation to obtain a good measure of the
amount of error we may have for that quantity. We will be spending
several weeks analyzing errors associated with Monte Carlo simulation
methods and ways to reduce these errors.

First of all it is clear that any quantity obtained from a simulation
almost always suffer from errors due not to roundoff errors (which are
usually comparatively very small) but due to the stochastic nature of
the simulation. One can see that in any one of the following ways.

1. Perform a simulation using a given number of particles N. Then
repeat the simulation using the same number of particles but
change the seed at the start of the simulation. The positions of
these N particle will therefore be different compared with the
first simulation. You will find that the quantity you obtain for
N’ and therefore for the value of m will be different.

2. Perform a simulation using a given number of particles V7. Re-
peat the simulation using a higher number of particles, No > Ny

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 5: Monte Carlo Simulation 22

but using the same seed as the first simulation. You will find
that the results obtained for 7 are different for the two simula-
tions.

3. Cousider the following thought or hypothetical (”gedanken”)
experiment. Imagine performing a simulation with N number
of particles, obtain N’ number of particles inside the rug, and
therefore m =~ 4N’/N. Imagine repeating the simulation using
the same seed as the first experiment but with N + 1 particles.
The first NV particle have exactly the same positions as the first
experiment and so the same value for N’. If the last extra
particle in the second experiment is inside the rug, then N’ is
one higher than for the first experiment and therefore the result
for mis 4(N’ +1)/(N + 1). But this cannot be the same as the
previous value of 4N’ /N, because

N +1 N’

=4— = NN +1)=N'(N+1 N=N'
T iy P N) =N (N4 1) = N =N, (6)

which cannot be true. On the other hand, if the last extra
particle is outside the rug, then N’ is the same as in the first

4

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 5: Monte Carlo Simulation 23

experiment, and therefore the value of 7 must be slightly less
than the value we obtained from the first experiment.

We perform the above simulation using 5000 particles and a
certain starting seed for the pseudorandom number generator
we are using, and obtain a value of 3.1096 for 7. The relative
error is —0.0102. A second calculation using the same number
of particles but with a different starting seed gives 3.1536 and a
relative error of 0.0038. The randomness in the computed values
is evident.

Next we repeat the simulation using 500, 000 particles but with 3
different seeds each time. The results for 7 are 3.1408(—0.00025),
3.1396(—0.00063), and 3.14284(0.00040). The numbers in paren-
theses are the corresponding relative errors. This result strongly
suggests that the error generally decreases with increasing num-
ber of particles. We will re-examine the errors to be expected
in this type of Monte Carlo simulation in more detail in about
two weeks.

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 5: Monte Carlo Simulation 24

5.4. Main Advantage of Computer Simulation

It is clear from the above example of using Monte Carlo simulation
to compute the area of a circle that by a slight modification of the
program we can easily compute that area (or volume in three dimen-
sion) of any object, no matter how irregular its shape may be. All
we need is to be able to find out if a given point is inside the ob-
ject or not. Thus we see that Monte Carlo simulations (and in fact
computer simulations in general) are very versatile and can readily be
adapter to treat extremely complex problems. This is where computer
simulations become so invaluable.

References

[1] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis,
3rd edition (McGraw Hill, 2000).

[2] Ilya M. Sobol, A Primer for the Monte Carlo Method, (CRC Press,
1994).

Toc <4< | d 2 | | 4 Back <« Doc Doc »

Section 5: Monte Carlo Simulation 25

[3] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods,
(Methuen, London, 1964).

[4] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, (Wiley,
New York, 1986).

[5] P. Bratley, B. L. Fox and E. L. Schrage, A Guide to Simulation,
(Springer-Verlag, New York, 1983).

[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery Numerical Recipes, Second Edition, Sec. 7.6, p. 295
(Cambridge University Press, 1992).

Toc <4< | d 2 | | 4 Back <« Doc Doc »

http://www.nr.com

	Table of Contents
	1 Introduction
	2 A wish-list for random numbers
	3 Linear congruential generators
	3.1 Remarks on linear congruential generators
	3.2 Explore some toy models
	3.3 Marsaglia phenomenon

	4 Mersenne Twister: A Much Better Generator
	5 Monte Carlo Simulation
	5.1 Introduction to Monte Carlo Simulations
	5.2 A Simple Example of Monte Carlo Simulation
	5.3 Errors in Stochastic Simulations
	5.4 Main Advantage of Computer Simulation

