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1. Accuracy and Error Measures

After building a classifier or predictor, we would like an estimate of
how accurately they are for making prediction for unseen samples.
You may even have tried different methods to build more than one
classifier (or predictor) and now wish to compare their accuracy. We
want to define more precisely the meaning of accuracy, and consider
ways in which the accuracy can be estimated.

1.1. Classifier Accuracy Measures

Using training data to derive a classifier or predictor, M , and then
to estimate the accuracy of the resulting learned model can result in
misleading over-optimistic estimate due to over-specialization of the
learning algorithm to the data. Instead, accuracy is better measured
on a test set consisting of class-labeled samples that were not used to
train the model. The accuracy of a classifier, acc(M), on a given test
set is the percentage of test set samples that are correctly classified
by the classifier.

We can also speak of the error rate or misclassification rate
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of a classifier, M , which is simply 1 − acc(M). If we were to use the
training data to estimate the error rate, this quantity is known as the
resubstitution error. This error estimate is optimistic of the true
error rate.

The confusion matrix is a useful tool for analyzing how well your
classifier can recognize samples of different classes. Such a matrix for
the case of two classes is shown in the table.

Predicted class
C1 C2

C1 true positive false positive
Actual class

C2 false negative true negative

Given k classes, a confusion matrix is a table of at least size m×m.
An entry, CMi,j in the first m rows and m columns indicates the
number of samples of class i that were labeled by the classifier as class
j. For a classifier to have good accuracy, ideally most of the sample
would be represented along the diagonal of the confusion matrix, with

Toc JJ II J I Back J Doc Doc I



Section 1: Accuracy and Error Measures 5

the rest of the entries being close to zero.
The table may have additional rows or columns to provide totals

or recognition rate per class.
Given two classes, we can talk in terms of positive samples,

pos, (samples of the main class of interest, e.g. buy = yes) versus
negative samples (e.g. buy = no), neg. True positive, tp, refer
to the positive samples that were correctly labeled by the classifier,
while true negatives, tn, are the negative samples that were correctly
labeled by the classifier. False positives, fp, are the negative samples
that were incorrectly labeled. Similarly, false negatives, fn, are
positive samples that were incorrectly labeled. One can see that the
accuracy of a classifier, which defined as the percentage of test set
samples that are correctly classified, is given by

Acc =
tp + tn

pos + neg
.

However there may be other more effective ways to define accu-
racy. Suppose you have trained a classifier to classify medical data
samples as either ”cancer” or ”not-cancer”. We would like to be able
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to know how well the classifier can recognize ”cancer” samples (the
pos samples) and how well it recognizes ”not-cancer” samples (the
neg samples). The sensitivity, sen, and specificity, spec, measures
can be used, respectively, for this purpose. Sensitivity is also referred
to as the true positive recognition rate, it is the fraction of positive
samples that are correctly identified

sen =
tp
pos

.

Specificity is the true negative recognition rate, it is the fraction of
negative samples that are correctly identified

spec =
tn
neg

.

In addition, we may use precision, prec, to denote the fraction of
samples labeled as ”cancer” that actually are ”cancer” samples,

prec =
tp

tp + fp
.

It can be shown that accuracy is a function of sensitivity and speci-
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ficity:

acc = sen
pos

pos + neg
+ spec

neg
pos + neg

.

It may also be important to assess the costs and benefits asso-
ciated with a classification model. The cost associated with a false
positive (such as, incorrectly predicting that a cancerous patient is
not cancerous) is far greater than that of a false positive (incorrectly
labeling a noncancerous patient as cancerous). In such cases, we can
outweigh one type of error over another by assigning a different cost
to each. Examples of such cost-benefit analysis are loan application
decisions and target marketing mail-outs. The cost of giving out a
loan to a defaulter greatly exceeds that of the lost business incurred
by denying a loan to a non-defaulter. Similarly the cost of mail-outs
to numerous households that do not respond may outweigh the cost
of lost business from not mailing to households that would have re-
sponded.
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1.2. Predictor Error Measures

Let T be a test set of the form (X1, y1), (X2, y2), . . . , (Xm, ym), where
(Xi are the n-dimensional test samples with associated known values,
yi, for a response variable, y, and m is the number of samples in T .
Since predictors return a continuous values rather than a categorical
label, it is difficult to say exactly whether the predicted value, y′i, for
Xi is correct. Instead we need to look at how far off the predicted
value is from the actual known value.

The lost functions measure the error between yi and the predicted
value, y′i. The most common loss functions are

Absolute error = |yi − y′i|
Squared error = (yi − y′i)

2.

The test error or generalization error, is the average loss over the test
set. Thus, we have the following error rates (percentages)

Mean absolute error =
1
m

m∑
i=1

|yi − y′i|
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Mean squared error =
1
m

m∑
i=1

(yi − y′i)
2.

Sometimes we take the square root of the mean squared error, the
resulting error measure is called the root mean squared error.
This is useful in that it allows the error measured to be of the same
unit as the quantity being predicted.

Sometimes, we may want the error to be relative to what it would
have been if we had just predicted ȳ, the mean value for y from T .That
is, we normalize the total loss by dividing by the total loss incurred
from always predicting the mean. Relative measure of error include:

Relative absolute error =
∑m

i=1 |yi − y′i|∑m
i=1 |yi − ȳ|

Relative squared error =
∑m

i=1(yi − y′i)
2∑m

i=1(yi − ȳ)2
.

We can take the square root of the relative squared error to obtain
the root relative squared error so that the resulting error has the
same unit as the quantity predicted.
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2. Evaluating the Accuracy of a Classifier or Predictor

How can we use the above measures to obtain reliable estimate of
classifier accuracy or predictor error? Holdout, random subsampling,
cross-validation, and the bootstrap are common techniques for assess-
ing accuracy based on randomly sampled partitions of the given data
set. The use of such techniques to estimate accuracy or error increases
the overall computation time, yet is useful for model selection.

2.1. Holdout Method and Random Subsampling

In the holdout method, the given data are randomly partitioned into
two sets, a training set (typically consisting of two-thirds of the data)
and a test set (typically consisting of the remaining one-third of the
data). The training set is used to derive the model, whose accuracy
is estimated with the test set.

Random subsampling is a variation of the holdout method in
which the holdout method is repeated a number of times. The overall
accuracy is taken as the average of the accuracies obtained from each
run. For prediction, we can take the average of the prediction error
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rate.

2.2. Cross-Validation

In k-fold cross-validation, the initial data are randomly partitioned
into k mutually exclusive subsets of ”folds”, D1, D2,. . . ,Dk, each of
approximately equal size. Training and testing is performed k times.
In run i, subset Di is used as the test set, and the remaining subsets
are collectively used to train the model. Thus each sample is used
(k − 1) times for training and once for testing.

For classification, the accuracy estimate is the overall number of
correct classification from each run, divided by the number of sam-
ple in the initial data, m. For prediction, the error estimate can be
computed as the total error from the k runs, divided by m.

Leave-one-out is a special case of k-fold cross-validation where
k = m. That is,only one sample is ”left out” at a time for the test
set.

In stratified cross-validation, the folds are stratified so that
the class distribution of the samples in each fold is approximately the
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same as in the initial data.
In general, stratified 10-fold cross-validation is recommended for

estimating accuracy due to its relatively low bias and variance.

2.3. Bootstrap

The bootstrap method samples the given training data uniformly
with replacement. Each time a sample is selected, it remains in the
training set and is equally likely to be selected again.

There are several bootstrap methods. A commonly used one is the
.632 bootstrap, which works as follows. A given data set of m sam-
ples is sampled m times, with replacement, resulting in a bootstrap
training set of m samples. In this training set, some of the original
samples will occur more than once. But some samples did not make
it into the training set. These are included in the test set. Since each
sample has a probability of 1/m of being selected in any given selec-
tion, so the probability of not being chosen is (1− 1/m). We have to
select like this m times, so the probability that a sample will not be
chosen at all is (1− 1/m)m. If m is large, the probability approaches
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e−1 = 0.384. Thus, 36.8% of samples will not be selected for training
and thereby end up in the test set, and the remaining 63.2% will form
the training set.

We can repeat the sampling procedure k times, where in each run,
we use the current test set to obtain an accuracy estimate of the model
obtained from the current bootstrap sample. The overall accuracy of
the model is then estimated as

Acc(M) =
k∑

i=1

((
1− 1

e

)
×Acc(Mi)test set +

1
e
×Acc(Mi)train set

)
,

where Acc(Mi)test set is the accuracy of the model obtained with
bootstrap sample i when it is applied to test set i. Acc(Mi)train set
is the accuracy of the model obtained with bootstrap sample i when it
is applied to the original set of data samples. The bootstrap method
works well with small data sets.
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3. Model Selection

Suppose that we have generated two models. M1 and M2 (for either
classification or prediction) from our data. We have performed 10-fold
cross-validation to obtain a mean error rate for each. How can we de-
termine which model is best? We may select the model with the lowest
error rate, however the mean error rates are just estimates of error
on the try population of future data cases. There can be considerable
variance between error rates within an given 10-fold cross-validation
experiment. Although the mean error rates obtained for M1 and M2

may appear different, that difference may not be statistically signifi-
cant. What if any difference between the two may just be attributed
to chance?

3.1. Estimating Confidence Intervals

To determine if there is any ”real” difference in the mean error rates
of two models, we need to employ a test of statistical significance and
obtain some confidence limits for our mean error rates. One common
technique is to used the t-test or Student’s t-test. You can consult
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the reference [1] for details.

3.2. ROC Curves

ROC Curves are a useful visual tool for comparing two classification
models. ROC stands for Receiver Operating Characteristics. ROC
Curves come from signal detection theory.

An ROC curve shows the trade-off between the true positive rate or
sensitivity and the false-positive rate for a given model. That is, given
a two-class problem, it allows us to visualize the trade-off between the
rate at which the model can actually recognize ’yes’ cases versus the
rate at which it mistakenly identifies ’no’ cases as ’yes’ for different
”portions” of the test set. Any increase in the true positive rate occurs
at the cost of an increase in the false-positive rate. The area under
the ROC curve is a measure of the accuracy of the model. [1]

4. Ensemble Methods – Increasing the Accuracy

Bagging and boosting are two general strategies for improving classi-
fier and predictor accuracy. They are examples of ensemble meth-
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ods, or methods that uses a combination of models. Each combines a
series of k learned models, M1,M2, . . . ,Mk, with the aim of creating
an improved composite model, M∗. Both bagging and boosting can
be used for classification as well as prediction.

4.1. Bagging

Bagging stands for bootstrap aggregation. Given a set, D, of m
samples, bagging works as follows in the case of classification.

Choose a number k of classification models to be used in the en-
semble. For each i = 1, 2, . . . , , k, a training set, Di of m samples is
sampled with replacement from the original set, D. A classifier model,
Mi, is learned for each training set, Di. To classify an unknown sam-
ple, X, each classifier, Mi, returns its class prediction, which counts
as one vote. The bagged classifier, M∗, counts the votes and assigns
the class with the most votes to X.

Bagging can be applied to the prediction of continuous values by
taking the average value of each prediction for a given test sample.

The bagged classifier often has significantly greater accuracy than
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a single classifier derived from D, the original training data set. It will
not be considerably worst and is more robust to the effects of noisy
data. The increased accuracy occurs because the composite model
reduces the variance of the individual classifiers. For prediction, it
was theoretically proven that a bagged predictor will always have
improved accuracy over a single predictor derived from D.

4.2. Boosting

In boosting, weights are assigned to each training sample. A series
of k classifiers is iteratively learned. After a classifier, Mi is learned,
the weights are updated to allow the subsequent classifier, Mi+1, to
”pay more attention” to the training samples that were misclassified
by Mi.. The final boosted classifier, M∗, combines the votes of each
individual classifier, where the weight of each classifier’s vote is a
function of its accuracy. The boosting algorithm can be extended for
the prediction of continuous values.

Adaboost is a popular boosting algorithm. We are given D, a
data set of m class-labeled samples, (X1, y1), (X2, y2), . . . , (Xm, ym),
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where yj is the class label of sample Xj . We need to choose a value
for k to be the total number of classifiers to be created, and adopt a
specific classification scheme.

• Adaboost: Constructing Composite Model, M∗

The Adaboost algorithm is:
1. initialize the weight of each sample, wj in D to 1/m;

2. for i = 1 to k do

3. sample D with replacement according to wj to obtain Di;

4. use training set Di to derive a model, Mi;

5. compute error(Mi), the error rate of Mi

6. if error(Mi) > 0.5 then

7. reinitialize the weights to 1/m

8. go back to step 3;

9. endif

10. for each sample in Di that was correctly classified do
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11. wj = wj× error(Mi) /( 1 - error(Mi) );

12. normalize the weight of each sample

13. endfor
To compute the error rate of model Mi in step 5, we sum the

weights of each of the samples in Di that Mi misclassified. That is

error(Mi) =
m∑

j=1

wj × err(Xj),

where err(Xj) is the misclassification error of sample Xj . If the sam-
ple was misclassified, then err(Xj) is 1, otherwise it is 0. If the per-
formance of Mi is so poor that its error exceeds 0.5, then we abandon
it in step 6. Instead, in steps 7-9, we try again by generating a new
Di training set, from which we derive a new Mi.

The error rate of Mi affects how the weights of the training samples
are updated. If a sample in round i was correctly classified, it weight
is multiplied by error(Mi) /( 1 - error(Mi) ).

Once the the weight of all the correctly classified samples are up-
dated (step 10), the weights for all samples (including the misclassified
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ones) are normalized so that their sum remains the same as before.
To normalize a weight, we multiply it by the sum of the old weights,
divided by the sum of the new weights. As a result, the weights of mis-
classified samples are increased and the weights of correctly classified
samples are decreased.

• Using M∗ to Classify An Unknown Sample
Once boosting is complete, the ensemble of classifiers is used to predict
the class label of an unknown sample, X. Unlike bagging, where each
classifier was assigned an equal vote, boosting assigns a weight to
each classifier’s vote, based on how well the classifier performed. The
lower a classifier’s error rate, the more accurate it is, and therefore,
the higher its weight for voting should be. The weight of classifier
Mi’s vote is chosen to be

log
(

1− error(Mi)
error(Mi)

)
.

For each class, c, we sum the weights of each classifier that assigned
class c to X. The class with the highest sum is the ”winner” and is
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returned as the class prediction for sample X.
The following summarizes the algorithm for using the composite

model to classify an unknown sample, X:
1. initialize the weight of each class, wi to 0;

2. for i = 1 to k do // for each classifier;

3. wi = log
(

1−error(Mi)
error(Mi)

)
; // weight of classifier’s vote

4. c = Mi(X); // get class prediction for X from Mi

5. add wi to weight for class c

6. endfor

7. return the class with the largest weight

4.3. Remarks on Bagging and Boosting

Because of the way boosting focuses on the misclassified samples, it
risks overfitting the resulting composite model to such data. There-
fore, sometimes the resulting ”boosted” model may be less accurate
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than a single model derived from the same data. Bagging is less sus-
ceptible to model overfitting. While both can significantly improve
accuracy in comparison to a single model, boosting tends to achieve
greater accuracy.
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