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1. Introduction

Using for example scanners, large supermarkets and department stores
have been collecting huge amount of customer transaction records in
their databases. Each record lists all the items bought by a customer
on a single purchase transaction. Managers would be interested to
know if certain groups of items are consistently purchased together.
A business can use the knowledge of these buying patterns to improve
the placement of these items in the store or the layout of the mail-
order catalog pages and web pages.

This need has led to the development of techniques that automati-
cally look for associations between items that are stored in databases.
Association rules are one of the most common techniques of data min-
ing for local-pattern discovery in unsupervized learning systems.[1]

2. Market-basket Analysis

A market basket refers to a collection of items purchased by a cus-
tomer in a single transaction. For our purpose here, we are not in-
terested in the quantity of items of a given kind that is bought in
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a transaction. We are only interested in the different types of items
purchased. We want to analyze the accumulated collection of trans-
actions of numerous number of customers recorded over a long period
of time.

The goal is to find sets of items, or itemsets, that appear together
in many transactions. In other words we want to discover important
associations among items such that the presence of some items in a
transaction will imply the presence of some other items in the same
transaction.

Association rules provide information of this type in the form of
if-then statements. These rules are computed from the data and,
unlike the if-then rules of logic, association rules are probabilistic in
nature. In association analysis the antecedent (the if part of an if-then
statements) and the consequent (the then part) are itemsets that are
disjoint (do not have any items in common).

In addition to the antecedent and the consequent, an association
rule has two important numbers that express the degree of useful-
ness and uncertainty about the rule. These two numbers must be
predetermined by experts familiar with the business.
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The first number is called the support for the rule. The support
count, sc, is the number of transactions in D that include all items
in the antecedent and consequent parts of the rule. The support
count divided by |D| is referred to as the support, s, and is commonly
expressed as a percentage).

The other number is known as the confidence of the rule. Confi-
dence is the ratio of the number of transactions that include all items
in the consequent as well as the antecedent (namely, the support) to
the number of transactions that include all items in the antecedent.

For example if a supermarket database has 100, 000 point-of-sale
transactions, out of which 2, 000 include both items A and B and
800 of these include item C, the association rule ”If A and B are
purchased then C is purchased on the same trip” has a support count
of 800 transactions (thus a support of 0.8% = 800/100, 000) and a
confidence of 40%(= 800/2, 000).

One way to think of support is that it is the probability that
a randomly selected transaction from the database will contain all
items in the antecedent and the consequent, whereas the confidence
is the conditional probability that a randomly selected transaction
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will include all the items in the consequent given that the transaction
includes all the items in the antecedent.

Let the entire set of distinct items that can be found in a given
database, D, be given by the set

I = {i1, i2, . . . , in}.
This set represents the entire collection of different types of items that
a given company sells. Our database D is a collection of transactions
where each transaction, T , is a set of items such that T ⊆ I, i.e. T
is a subset of I. Each transaction is identified by a label called a
transaction identifier, called TID.

Let A be an itemset. A transaction T is said to contain A if and
only if A ⊆ T . An association rule is an implication of the form
A ⇒ C, where A ⊂ I and C ⊂ I are disjoint itemsets, i.e. A∩C = φ.
A is the antecedent and C is the consequent.

The association rule A ⇒ C holds with support s, where s is the
percentage of transaction in D that contains A ∪ C, i.e. the union of
sets A and C. This is taken to be the probability, P (A ∪ C).

The association rule A ⇒ C has confidence c in the transaction
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D, where c is the percentage of transactions in D containing A that
also contain C. This is taken to be the condition probability, P (C|A).
That is

s(A ⇒ C) = P (A ∪ C)

c(A ⇒ C) = P (C|A) =
s(A ∪ C)

s(A)
.

Rules that satisfy both a minimum support threshold (min sup)
and a minimum confidence threshold (min conf) are called strong.

A set of items is referred to as an itemset. An itemset that contains
k items is a k-itemset.

An itemset whose support is larger than a prescribed minimum
support threshold, min sup, is referred to as a frequent itemset. The
set of all the frequent k-itemsets in D is commonly denoted by Lk.

2.1. The Two Phases of Discovering Association Rules

There are two phases in the problem of data mining association rules.
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1. Find all frequent itemsets: i.e. all itemsets that have support s
above a predetermined minimum threshold.

2. Generate strong association rules from the frequent itemsets:
these association rules must have confidence c above a predeter-
mined minimum threshold.

After the large itemsets are identified, the corresponding associa-
tion rules can be derived in a relatively straightforward manner. Thus
the overall performance of mining association rules is determined pri-
marily by the first step.

Efficient counting of large itemsets is thus the focus of most asso-
ciation rules mining algorithms.

2.2. An Example: Finding the Frequent Itemsets

Here let us consider a very simplified version of such a transaction
database, D. There are a total of 9 transactions involving a total of 6
items. Each item in D is labeled by a positive number. Transaction
001 is a point-of-sale purchase of items 1, 2 and 5. Transaction 002
is a joint purchase of items 2, 4, etc. Note that the items within each
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transaction are sorted lexicographically.

TID Items
001 1, 2, 5
002 2, 4
003 2, 3, 6
004 1, 2, 4
005 1, 3
006 2, 3
007 1, 3
008 1, 2, 3, 5
009 1, 2, 3

Our task here is to derive association rules with minimum confi-
dence threshold min conf of 70% between itemsets in D that have a
support count of at least 2. This means that the minimum support
threshold, min sup, is given by 2/9 = 22%. Since this database has
so few transactions and each transaction contains only a small num-
ber of items, we can work out everything by hand. Our first job is
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to find all the itemsets that have sc ≥ 2. We can do that simply by
enumeration:

{1} with support count of 6;
{2} with support count of 7;
{3} with support count of 6;
{4} with support count of 2;
{5} with support count of 2;
{1, 2} with support count of 4;
{1, 3} with support count of 4;
{1, 5} with support count of 2;
{2, 3} with support count of 4;
{2, 4} with support count of 2;
{2, 5} with support count of 2;
{1, 2, 3} with support count of 2;
{1, 2, 5} with support count of 2;

Out of a possible number of 26 − 1 = 63 potential sets, there are
only 13 such frequent itemsets.
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2.3. Challenges

In real-world applications, finding all frequent itemsets in a database
is a nontrivial problem because:

• the number of transactions in the database can be very large and
may not fit in the memory of the computer’s memory. Recall
that Walmart has 20 million transactions/day and a 10 terabyte
database.

• the potential number of frequent itemsets is exponential to the
number of different items, although the actual number of fre-
quent itemsets can be much smaller. Often a huge number of fre-
quent itemsets are generated, especially if min sup is low. This
is because if an itemset is frequent, each of its subsets is frequent
as well. A long itemset will contain a combinatorial number of
shorter, frequent sub-itemsets. For example, a frequent itemset
of length 100, such as {a1, a2, . . . , a100}, contains

(
100
1

)
= 100

frequent 1-itemsets: {a1}, {a2}, . . . , {a100},
(
100
2

)
= 4950 fre-

quent 2-itemsets: {a1, a2}, {a1, a3}, . . . , {a99, a100}, and so on.
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The total number of frequent itemsets that it contains is thus(
100
1

)
+

(
100
2

)
+ . . . +

(
100
100

)
= 2100 − 1 ≈ 1.27× 1030

• we need to develop algorithms that are scalable (their complex-
ity should increase linearly, not exponentially, with the number
of transactions) and that examine as few infrequent itemsets as
possible.

3. The Apriori Algorithm

We will now discuss the Apriori algorithm. [2, 3] By convention,
the algorithm assumes that items within a transaction or itemset are
sorted in lexicographic order. It employs an iterative approach known
as a level-wise search, where (k − 1)-itemsets are used to explore k-
itemsets.

First, the set of frequent 1-itemsets is found by scanning the
database to accumulate the count for each item, and collecting those
items that satisfy minimum support. The resulting set is denoted L1.
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Next, L1 is used to find L2, which is then used to find L3, and so
on, until no more frequent itemsets can be found. The finding of each
Lk requires one full scan of D.

To improve the efficiency of the level-wise generation of frequent
itemsets, one take advantage of the Apriori property:

All nonempty subsets of a frequent itemset must also be frequent.

This property is based on the following observation. If an itemset
A does not satisfy the minimum support threshold, min sup, then
A is not frequent; i.e. P (A) < min sup. If an item B is added to
the itemset A, then the resulting itemset A ∪ B cannot occur more
frequently than A. Therefore A ∪ B is not frequent either, that is
P (A ∪B) < min sup.

This property belongs to a special category of properties called
antimonotone in the sense that if a set cannot pass a test, then all of
its supersets will fail the same test as well.

A two-step process is used to find Lk from Lk−1, for k ≥ 2:

1. The join step: To find Lk, a set of candidate k−-itemsets is
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generated by joining Lk−1 with itself. This set of candidates is
denoted by Ck. Let `1 and `2 be itemsets in Lk−1. The notation
`i[j] refers to the jth item in `i. Thus in `1, the last item and
the next to the last item are given respectively by `1[k− 1] and
`1[k− 2]. Any two itemsets Lk−1 are joined if their first (k− 2)
items are in common. That is, members `1 and `2 are joined if

(`1[1] = `2[1]) ∧ (`1[2] = `2[2]) ∧ . . . ∧
(`1[k − 2] = `2[k − 2]) ∧ (`1[k − 1] < `2[k − 1]).

The condition `1[k − 1] < `2[k − 1] ensures that no duplicates
are generated. The resulting itemset formed by joining `1 and
`2 is {`1[1], `1[2], . . . , `1[k − 2], `1[k − 1], `2[k − 1]}.

2. The prune step: Set Ck is a superset of Lk, because although
all the frequent k-itemsets are included in Ck, its members may
or may not be frequent. One could scan the database to de-
termine the count of each candidate in Ck and eliminate any
itemset that does not meet the minimum support threshold.
This would then give Lk. However, Ck can be huge, and so this
could be very time-consuming.
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To eliminate the infrequent itemsets, the Apriori property is
used as follows. Any (k− 1)-itemset that is not frequent cannot
be a subset of a frequent k-itemset. Hence, if any (k−1)-itemset
of a candidate k-itemset is not in Lk−1, then the candidate can-
not be frequent either and so can be removed from Ck. This
subset testing can be done quickly by maintaining a hash tree
of all frequent itemsets.

3.1. An Example of the Use of The Apriori Algorithm

We illustrate the use of the Apriori algorithm for finding frequent
itemsets in our transaction database, D.

In the first iteration of the algorithm, each item is a member of
the set of candidates 1-itemsets, C1. The algorithm simply scans all
the transactions in order to count the number of occurrences of each
item.
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C1 itemset Support count
{1} 6
{2} 7
{3} 6
{4} 2
{5} 2
{6} 1

The set of frequent 1-itemsets, L1, consists of the candidate item-
sets satisfying the minimum support count of 2. Thus all the candi-
dates in C1, except for {6}, are in L1.

L1 itemset Support count
{1} 6
{2} 7
{3} 6
{4} 2
{5} 2

To discover the set of frequent 2-itemsets, L2, the algorithm joins
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L1 with itself to generate a candidate set of 2-itemsets, C2. Note that
no candidates are removed from C2 during the pruning step since each
subset of the candidates is also frequent.

C2 itemset
{1, 2}
{1, 3}
{1, 4}
{1, 5}
{2, 3}
{2, 4}
{2, 5}
{3, 4}
{3, 5}
{4, 5}

Next the transactions in D are scanned and the support count of
each candidate itemset in C2 is accumulated.
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C2 itemset Support count
{1, 2} 4
{1, 3} 4
{1, 4} 1
{1, 5} 2
{2, 3} 4
{2, 4} 2
{2, 5} 2
{3, 4} 0
{3, 5} 1
{4, 5} 0

The set of frequent 2-itemsets, L2, is then determined, consisting
of those candidate 2-itemsets in C2 having minimum support.
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L2 itemset Support count
{1, 2} 4
{1, 3} 4
{1, 5} 2
{2, 3} 4
{2, 4} 2
{2, 5} 2

Next, C3 is generated by joining L2 with itself. The result is
C3 = {{1, 2, 3}, {1, 2, 5}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}}. C3 is
then pruned using the Apriori property: All nonempty subsets of a
frequent itemset must also be frequent. From the way each candidate
of C3 is formed, it is clear that all we need to check is the subset
obtained from the last two members of the candidate set.

Since {2, 3} is a frequent itemset, we keep {1, 2, 3} in C3.
Since {2, 5} is a frequent itemset, we keep {1, 2, 5} in C3.
Since {3, 5} is not a frequent itemset, we remove {1, 3, 5} from C3.
Since {3, 4} is not a frequent itemset, we remove {2, 3, 4} from C3.
Since {3, 5} is not a frequent itemset, we remove {2, 3, 5} from C3.
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Since {4, 5} is not a frequent itemset, we remove {2, 4, 5} from C3.

Therefore after pruning, C3 is given by:

C3 itemset
{1, 2, 3}
{1, 2, 5}

The transactions in D are scanned to determine L3, consisting of
those candidates 3-itemsets in C3 having at least minimum support.

C3 itemset Support count
{1, 2, 3} 2
{1, 2, 5} 2

Since both 3-itemsets in C3 have the least minimum support, L3

is therefore given by:

L3 itemset Support count
{1, 2, 3} 2
{1, 2, 5} 2
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Finally L3 is joined with itself to generate a candidate set of 4-
itemsets, C4. This results in a single itemset {1, 2, 3, 5}. However
this itemset is pruned since its subset {3, 5} is not frequent. Thus,
C4 = φ, and the algorithm terminates, having found all of the frequent
itemsets.

4. Association Rules

The second phase involves obtaining association rules based on the
frequent itemsets found in the first phase of the algorithm. [4] Asso-
ciation rules can be generated as follows:

1. For each frequent itemset f , generate all its nonempty subsets.

2. For every nonempty subset g of f , output the rule

g ⇒ (f − g)

if
support count(f)
support count(g)

≥ min conf.
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4.1. Example

Let us consider our transaction database D. We want to find all
the association rules that can be obtained from the frequent itemset
f = {1, 2, 5}. The nonempty subsets of f are {1, 2}, {1, 5}, {2, 5},
{1}, {2}, {5}. The resulting association rules are as shown below,
each listed with its confidence:

{1, 2} ⇒ {5}, confidence = 2/4 = 50%
{1, 5} ⇒ {2}, confidence = 2/2 = 100%
{2, 5} ⇒ {1}, confidence = 2/2 = 100%
{1} ⇒ {2, 5}, confidence = 2/6 = 33%
{2} ⇒ {1, 5}, confidence = 2/7 = 29%
{5} ⇒ {1, 2}, confidence = 2/2 = 100%

Since the minimum confidence threshold is 70%, only the second,
third, and last rules above are strong.
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4.2. Lift Ratio

A high value of confidence suggests a strong association rule. However
this can be deceptive because if the antecedent and/or the consequent
have a high support, we can have a high value for confidence even when
they are independent!

A better measure to judge the strength of an association rule is to
compare the confidence of the rule with the benchmark value where
we assume that the occurrence of the consequent itemset in a transac-
tion is independent of the occurrence of the antecedent for each rule.
We can compute this benchmark from the frequency counts of the
frequent itemsets. The benchmark confidence value for a rule is the
support for the consequent divided by the number of transactions in
the database. This enables us to compute the lift ratio of a rule.
The lift ratio is the confidence of the rule divided by the confidence
assuming independence of consequent from antecedent. A lift ratio
greater than 1.0 suggests that there is some usefulness to the rule.
The larger the lift ratio, the greater is the strength of the association.

All the association rules that can be derived from the frequent
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itemsets obtained for our example are given below. The antecedent,
A, and consequent, C, parts of the associate rules are given in columns
1 an 2, respectively. Columns 3, 4, and 5 contain the support counts
for A, C, and A ∪ C.

The confidences of the association rules,

c(A ⇒ C) = P (C|A) =
s(A ∪ C)

s(A)
.

can be obtained by dividing the result in column 5 by those in column
3, are shown in column 6. Those with confidence values higher than
the minimum confidence threshold of 60% are displayed in red.

Column 7 contains the benchmark confidence values, conf.′, com-
puted under the assumption that A and C are totally uncorrelated.
Therefore we have

conf.′(A ⇒ C) = P (C) =
s(C)
|D|

,

which can be computed by dividing the results in column 4 by the
total number of transactions in D (i.e. |D| = 9).
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The lift ratios are then given by

lift ratio =
conf.
conf.′

.

The highest lift ratio turns out to be 9/4, and there are 2 such cases
(displayed in red).

Only the association rule {5} ⇒ {1, 2} has a confidence above the
minimum confidence threshold and the highest lift ratio.

The association rule {1, 2} ⇒ {5} does not meet the minimum
confidence threshold requirement and yet it has the highest lift ratio.

The association rule {2, 5} ⇒ {1} has a confidence above the min-
imum confidence threshold and the next highest lift ratio. One may
debate whether it is really meaningful. The same applies to the asso-
ciation rule {1, 5} ⇒ {2}.
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A C sc(A) sc(C) sc(A ∪ C) conf. conf.′ lift ratio
{1, 2} {5} 4 2 2 2/4 2/9 9/4
{1, 5} {2} 2 7 2 2/2 7/9 9/7
{2, 5} {1} 2 6 2 2/2 6/9 9/6
{1} {2, 5} 6 2 2 2/6 2/9 9/6
{2} {1, 5} 7 2 2 2/7 2/9 9/7
{5} {1, 2} 2 4 2 2/2 4/9 9/4
{1, 2} {3} 4 6 2 2/4 6/9 9/12
{1, 3} {2} 4 7 2 2/4 7/9 9/14
{2, 3} {1} 4 6 2 2/4 6/9 9/12
{1} {2, 3} 6 4 2 2/6 4/9 3/4
{2} {1, 3} 7 4 2 2/7 4/9 9/14
{3} {1, 2} 6 4 2 2/6 4/9 3/4
{1} {2} 6 7 4 4/6 7/9 6/7
{1} {3} 6 6 4 4/6 6/9 1
{1} {5} 6 2 2 2/6 2/9 3/2
{2} {3} 7 6 4 4/7 6/9 6/7
{2} {4} 7 2 2 2/7 2/9 9/7
{2} {5} 7 2 2 2/7 2/9 9/7
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5. Final Remarks

One major shortcoming of association rules data-mining is that the
support-confidence framework often generates too many rules. How-
ever, there have been a number of modifications and extensions to
improve the Apriori algorithm.[1]
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