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1. Introduction

1.1. Motivation and Background

The logic-based decision trees and decision rules methodology is the
most powerful type of off-the-shelf classifiers that performs well across
a wide range of data mining problems. These classifiers adopt a top-
down approach and use supervised learning to construct decision trees
from a set of given training data set. A decision tree consists of
nodes where attributes are tested. The outgoing branches of the node
correspond to all the possible outcomes of the test at the node.

For example, consider samples having two features, X and Y ,
where X has continuous real values and Y is a categorical variable
having three possible values, A, B, and C. The figure shows an ex-
ample of a simple decision tree for classifying these samples. Nodes
are denoted by circles, and the decision tree (actually an inverted tree)
ends at one of the leaves, denoted by rectangles. Each leaf identifies
a particular class. In this example, all samples with features values
X > 1 and Y = A belong to Class 1. Samples with X > 1 and
Y = B or C belong to Class 2. Samples with X ≤ 1 belong to Class
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Section 2: C4.5 Algorithm: Generating a Decision Tree 4

1, regardless of their value for Y .
Notice that in this example, at each node a test is performed based

on the value of a single attribute. Decision trees that use univariate
splits have a simple representational form, making it easy for the end-
user to understand the inferred model. However at the same time,
they represent a restriction on the expressiveness of the model and
thus the approximation power of the model.

2. C4.5 Algorithm: Generating a Decision Tree

We will consider the C4.5 algorithm for determining the best decision
tree based on univariate splits. It works with both categorical and
numeric feature values. The algorithm was developed by Ross Quin-
lan. It is an extension of his earlier ID3 algorithm. He went on to
create C5.0 and See5 (C5.0 for Unix/Linux, See5 for Windows) which
he markets commercially.

There are two stages of the C4.5 algorithm. The first part, which is
discussed in this section, deals with generating the decision tree based
on the training data set. The second part has to do with pruning the
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decision tree based on the validating samples.
We assume that we have a set T of training samples. Let the

possible classes be denoted as {C1, C2, . . . , Ck}. There are three pos-
sibilities depending on the content of the set T .

1. T contains one or more samples, all belonging to a single class
Cj . The decision tree for T is a leaf identifying class Cj .

2. T contains no samples. The decision tree is again a leaf but the
class to be associated with the leaf must be determined from
information other than T , such as the overall majority class in
T . The C4.5 algorithm uses as a criterion the most frequent
class as the parent of the given node.

3. T contains samples that belong to a mixture od classes. It must
be refined into subsets of samples that are closer to being a
single-class collection of samples. Based on the value of a sin-
gle attribute, an appropriate test that has a certain number of
mutually exclusive outcomes {O1, O2, . . . , On} is chosen. T is
partitioned into subsets T1, T2, . . . , Tn, where Ti contains all the
samples in T that have outcome Oi of the chosen test. The de-
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cision tree for T consists of a decision node identifying the test
and one branch for each possible outcome.

The same tree-building procedure is applied recursively to each
subset of training samples, so that the i-th branch leads to the de-
cision tree constructed from the subset Ti of training samples. The
successive division of the set of training samples proceeds until all the
subsets consist of sample belonging to a single class.

2.1. Choice of Test at a Node

The decision tree structure is determined by the tests that we choose
to perform at each of the nodes. Different tests, or different order
of their application, will yield different trees. The choice of test at a
given node is based on information theory to minimize the number of
test that will allow a sample to be classified. In other words, we are
looking for a compact decision tree that is consistent with the training
set.

Exploring all possible trees and selecting the simplest one is in-
feasible since the problem is NP-complete. Therefore most decision

Toc JJ II J I Back J Doc Doc I



Section 2: C4.5 Algorithm: Generating a Decision Tree 7

construction methods are non-backtracking, greedy algorithms. At
any given node, the algorithm used by C4.5 basically chooses to test
the attribute that provides the maximum degree of discrimination
between classes locally.

Suppose we have the task of selecting a possible test with n out-
comes (n values for a given categorical feature) that partition the set
T of training samples into subsets {T1, T2, . . . , Tn}. The only infor-
mation available for guidance is the distribution of classes in T and in
its subsets Ti. If S is any set of samples, let freq(Ci, S) stand for the
number of samples in S that belong to class Ci, and let |S| denote the
number of samples in the set S. The entropy of the set S is defined
as

Info(S) = −
k∑

i=1

freq(Ci, S)
|S|

log2

(
freq(Ci, S)

|S|

)
.

The unit for entropy is bits.
Now we can measure the information content of T by computing

Info(T ). We can also compute the total information content after T
has been partitioned in accordance with the outcomes of a chosen
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attribute test, say x. It is given by the weighted sum of the entropies
of each of the subsets:

Infox(T ) =
n∑

i=1

|Ti|
|T |

Info(Ti).

The quantity

Gain(x) = Info(T )− Infox(T )

measures the information that is gained by partitioning T in accor-
dance with the test based on x. The criterion is to select a test x to
maximize Gain(x) i.e. with the highest information gain.

2.2. Dealing with Features with Numeric Values

The above works with categorical attributes. How can one deal with
features that have numeric values? The C4.5 algorithm performs test
on numeric features by comparing the values to a certain threshold
value, z. If Y is such a numeric feature, and if it is chosen at a given
node, then the samples will be partitioned into two groups: those
whose values for Y are less than or equal to z, and those whose values
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are greater than z. The algorithm chooses the threshold z as follows.
The values of the attribute Y in the training set are first sorted in
ascending order as {v1, v2, . . . , vn}. Any threshold value lying between
vi and vi+1 will divide the samples into those whose value for Y lies
in {v1, v2, . . . , vi} and those whose values are in {vi+1, vi+2, . . . , vn}.
Thus there are m−1 possible splits on Y , all of which should be used
to compute the potential information gain to determine an optimal
split.

It is common to choose the midpoint of each interval , (vi+vi+1)/2,
as the representative threshold value. The C4.5 algorithm chooses as
the threshold the smaller value vi for every interval {(vi, vi+1}, rather
than the midpoint. This ensures that the threshold value appearing
in either the final decision tree or rules actually occur in the original
data set.

2.3. An Example: Generating a Decision Tree

We now consider as an example the training set T given in the fol-
lowing table. T has 14 samples, and each sample has 3 attributes
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and belongs to one of 2 possible classes. Attributes x1 and x3 have
nominal values, while attribute x2 has numeric values.

Sample x1 x2 x3 Class
1 A 70 true C1

2 A 90 true C2

3 A 85 false C2

4 A 95 false C2

5 A 70 false C1

6 B 90 true C1

7 B 78 false C1

8 B 65 true C1

9 B 75 false C1

10 C 80 true C2

11 C 70 true C2

12 C 80 false C1

13 C 80 false C1

14 C 96 false C1

Starting at the root level, given this training set T , we need to
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determine which of the three attributes should be tested to form the
node at the root. Since 9 samples belong to class C1 and the remaining
5 samples to C2, the entropy before splitting is [4]

info(T ) = − 9
14

log2

(
9
14

)
− 5

14
log2

(
5
14

)
= 0.940 bits.

First we consider using attribute x1 to split T into 3 subsets T1, T2,
and T3, containing samples with x1 equal to A, B, and C, respectively.
T1 has 5 samples, 2 are in C1 and 3 in C2, and so its entropy is

Info(T1) = −2
5

log2

(
2
5

)
− 3

5
log2

(
3
5

)
= 0.971 bits.

T2 has 4 samples, all are in C1 and none in C2, and so its entropy is

Info(T2) = −4
4

log2

(
4
4

)
− 0

4
log2

(
0
4

)
= 0 bits.

There is no randomness in T2 since all samples belong to C1. Lastly,
T3 has 5 samples, 3 are in C1 and 2 in C2, and so its entropy is

Info(T3) = −3
5

log2

(
3
5

)
− 2

5
log2

(
2
5

)
= 0.971 bits.
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Thus after this potential split, the resulting entropy is

Infox1(T ) =
5
14

Info(T1) +
4
14

Info(T2) +
5
14

Info(T3) = 0.694 bits.

The information gain (or loss in entropy) if the set is split using at-
tribute x1 is

Gain(x1) = 0.940− 0.694 = 0.246 bits.

Next we consider using attribute x2 to split T . We need to handle
the numeric values associated with x2. Since we are interested to find
the optimal threshold value, we only need to sort the distinct values
for x2 in the set T . The result is {65, 70, 75, 78, 80, 85, 90, 95, 96}. The
potential threshold values z is {65, 70, 75, 78, 80, 85, 90, 95} (by taking
the left end point of each interval). For every one of these values, we
use it to split T into 2 subsets, and compute the resulting information
gain. We choose the threshold value to be the one that gives the
highest information gain. It turns out that the optimal threshold
value is z = 80. This threshold value partition T into 2 subsets T1 and
T2, containing samples with x2 ≤ 80 and with x2 > 80, respectively.
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T1 as 9 samples, 7 are in C1 and 2 in C2, and so its entropy is

Info(T1) = −7
9

log2

(
7
9

)
− 2

9
log2

(
2
9

)
= 0.764 bit.

T2 has 5 samples, 2 are in C1 and 3 in C2, and so its entropy is

Info(T2) = −2
5

log2

(
2
5

)
− 3

5
log2

(
3
5

)
= 0.971 bits.

Thus after this potential split at x2, the resulting entropy is

Infox2(T ) =
9
14

Info(T1) +
5
14

Info(T2) = 0.838 bits.

Therefore the information gain (or loss in entropy) if the set is split
using attribute x2 is

Gain(x2) = 0.940− 0.838 = 0.102 bits.

Finally we consider using attribute x3 to split T into 2 subsets T1

and T2, containing samples with x3 equal to True, and False, respec-
tively. T1 has 6 samples, 3 are in C1 and 3 in C2, and so its entropy
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is

Info(T1) = −3
6

log2

(
3
6

)
− 3

6
log2

(
3
6

)
= 1 bit.

T2 has 8 samples, 6 are in C1 and 2 in C2, and so its entropy is

Info(T2) = −6
8

log2

(
6
8

)
− 2

8
log2

(
2
8

)
= 0.811 bits.

Thus after this potential split at x3, the resulting entropy is

Infox3(T ) =
6
14

Info(T1) +
8
14

Info(T2) = 0.892 bits.

Therefore the information gain (or loss in entropy) if the set is split
using attribute x3 is

Gain(x3) = 0.940− 0.892 = 0.048 bits.

By comparing the information gain for the three attributes, we see
that x1 gives the highest gain of 0.246 bits, and therefore this attribute
is selected for the first splitting in the construction of a decision tree.
The root node will test for the value of x1, and three branches will
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be created, one for each attribute values. Samples having those cor-
responding values are passed to each of these branches as subsets T1,
T2, and T3. The entire process of test selection and optimization will
be repeated for every child node.

Next, we consider each of the three subnodes separately. We first
consider splitting T1 which has 2 C1 samples and 3 C2 samples, and
so its entropy is

Info(T1) = −2
5

log2

(
2
5

)
− 3

5
log2

(
3
5

)
= 0.971 bits.

If we choose to test attribute x1, it turns out the optimal threshold
value is z = 70. Let us denote this optimal test as x4. This choice
of z splits T1 into 2 subsets. The first subset, consisting of 2 samples
with x2 ≤ 70, has all the 2 samples in C1 and none in C2. The second
subset, consisting of 3 samples with x2 > 70, has all the 3 samples in
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C2 and none in C1. The resulting information is

Infox4(T1) =
2
5

[
−2

2
log2

(
2
2

)
− 0

2
log2

(
0
2

)]
+

3
5

[
−0

3
log2

(
0
3

)
− 3

3
log2

(
3
3

)]
= 0 bits.

The information gained by this test is

Gain(x4) = 0.971− 0 = 0.971 bits.

The 2 branches created by this split will be the final leaf nodes since
the subsets of samples in each of the branches all belong to their
separate classes.

Actually there is no need to search for a better split since we know
that x4 provides the highest information gain. Here, just for fun we
consider choosing to split T1 using attribute x3. This test on x3, which
we denote by x′, divides T1 into 2 subsets. The first subset, consisting
of 2 samples with x3 = True, has 1 sample in C1 and 1 in C2. The
second subset, consisting of 3 samples with x3 = False, has all the 1
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sample in C1 and 2 in C2. The resulting information is

Infox′(T1) =
2
5

[
−1

2
log2

(
1
2

)
− 1

2
log2

(
1
2

)]
+

3
5

[
−1

3
log2

(
1
3

)
− 2

3
log2

(
2
3

)]
= 0.951 bits.

The information gained by this test turns out to be rather small

Gain(x′) = 0.971− 0.951 = 0.020 bits.

In any case, the conclusion is that T1 should be split according to test
x4. This subnode will then branch into 2 final leaf nodes, one for each
of the 2 classes.

Next we consider splitting T2. However since all 4 samples in T2

belong to C1, thus this node will be a leaf node, and no additional
tests are necessary for this branch.

We now turn to the last subset T3, whose entropy is

Info(T3) = −3
5

log2

(
3
5

)
− 2

5
log2

(
2
5

)
= 0.971 bits.
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It is clear that it will be better to test on attribute x3 which split
T2 into 2 subsets. The first subset, consisting of 2 samples with x3 =
True, has no sample in C1 and all 2 samples in C2. The second subset,
consisting of 3 samples with x3 = False, has all the 3 samples in C1

and none in C2. The resulting information is

Infox5(T3) =
2
5

[
−2

2
log2

(
0
2

)
− 2

2
log2

(
2
2

)]
+

3
5

[
−3

3
log2

(
3
3

)
− 0

3
log2

(
0
3

)]
= 0 bits,

where we have denoted this test as x5. The information gained by x5

Gain(x5) = 0.971− 0 = 0.971 bits

is clearly the best. This test results in 2 uniform subsets of samples of
the 2 separate classes, and therefore yields 2 final leaf nodes for this
branch.

The final decision tree for T is now determined. It can then be
used to classify any new unseen sample.

The resulting tree can be represented in the form of pseudocode
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with if-then-else constructions for branching into a tree structure. Our
decision above can be represented as
If (attribute1 = A) Then

If (attributes <= 70) Then
Classification = Class1

Else
Classification = Class2

EndIf
ElseIf (attribute = B) Then

Classification = Class1
Else

If (attribute3 = True) Then
Classification = Class2

Else
Classification = Class1

EndIf
EndIf

The manner in which classification decision is made according to the
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decision tree is now expressed in plain English and can be easily un-
derstood by the end-user.

2.4. The Split-Information parameter

The information-gain criterion unfortunately has a serious deficiency
in that there is a strong bias in favor of tests with a lot of outcomes.
A remedy comes in the form of a proper normalization. In analogy
with the definition of the entropy of a set, an additional parameter
is introduced for each test x that splits a given set T into subsets
Ti, i = 1, 2, . . . , n:

Split-Info(x) = −
n∑

i=1

|Ti|
|T |

log2

(
|Ti|
|T |

)
.

This represents the potential information generated by dividing set T
into n subsets Ti. Now, a new gain measure can be defined:

Gain-ratio(x) =
Gain(x)

Split-info(x)
.
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This new gain measure expresses the proportion of information gener-
ated by the split that appears useful in classification. The gain-ratio
criterion the selects a test that maximizes this ratio. This criterion is
robust and typically gives a consistently better choice of a test than
the previous gain criterion.

For example, if we go back to the test x1 that splits T into 3
subsets, the additional parameter is

Split-Info(x1) = − 5
14

log2

(
5
14

)
− 4

14
log2

(
4
14

)
− 5

14
log2

(
5
14

)
= 1.577bits

this gives

Gain-ratio(x1) =
0.246
1.557

= 0.156.

Of course a similar procedure should be performed for all the other
test in the decision tree to obtain the final decision tree. It turns
out that for this example, this modification in the algorithm does not
alter the decision tree.
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2.5. Handling Unknown Attribute Values

The algorithm here can be modified to handle samples with missing at-
tribute values. It is assumed that these missing values are distributed
probabilistically according to the relative frequency of known values
of the other samples.

Info(T ) and Infox(T ) are calculated as before, except that only
samples with known attribute values are taken into account. Then
the gain parameter is corrected with a factor F ,which represents the
probability that a given attribute is known. Specifically F is define
as the ratio of the number of samples in the database with a known
value for a given attribute and the total number of samples in a data
set. The new gain criterion now has the form

Gain(x) = F (Info(T )− Infox(T )) .

Similarly, Split-info(x) is altered by regarding the samples with un-
known values as an additional group in splitting. If the test x has n
outcomes, its Split-info(x) is computed as if the test divided the data
set into n + 1 subsets. This modification has a direct influence on the
final value of the modified criterion Gain-ratio(x).
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2.6. Pruning Decision Trees

Generating a decision to function best with a given of training data
set often creates a tree that over-fits the data and is too sensitive on
the sample noise. Such decision trees do not perform well with new
unseen samples.

We need to prune the tree in such a way to reduce the prediction
error rate. Pruning a decision tree means that one or more subtrees
are discarded and replaced with leaves thus simplifying the tree. One
possibility to estimate the prediction error rate is to use the cross-
validation techniques. This technique divides initially available sam-
ples into roughly equal-sized blocks and, for each block, the tree is
constructed from all sample except this block and tested with that
block of samples. With the available training and testing samples,
the basic idea is to remove parts of the tree that do not contribute
to the classification accuracy of unseen testing samples. producing a
less complex and thus more comprehensible tree.
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2.7. Advantages and disadvantages

Decision trees in general has several important advantages:

1. creating decision trees need no tuning parameters

2. no assumptions about distribution of attribute values or inde-
pendence of attributes

3. no need for transformation of variables (any monotonic trans-
formation of the variable will result in the same trees)

4. the method automatically finds a subset of the features that are
relevant to the classification

5. decision trees are robust to outliers as the choices of a split
depends on the ordering of feature values and not on the absolute
magnitudes of these values

6. it can easily be extended to handle samples with missing values

Decision trees also has several important disadvantages:

1. If data samples are represented graphically in an n-dimensional
space, then a decision tree divides the space into regions. each
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region is labeled with a corresponding class. An unseen sam-
ple is classified by determining the region in which the given
lies. Decision tree is constructed by successive refinement, split-
ting existing regions into smaller ones that contain highly con-
centrated points of one class. The number of training samples
needed to construct a good classifier is proportional to the num-
ber of regions.

2. Decision rules yield orthogonal hyperplanes in the n-dimensional
space, thus each region has the form of a hyper-rectangle. But
if in reality many of these decision hyperplanes are not perpen-
dicular to the coordinates (because certain deciding factors are
the results of combinations of different attributes), decision trees
and rules tend to be much more complex. Of course a solution
is to better transform the data in the pre-processing step.

3. There is a type of classification problem where the classification
criterion has the form: a given class is supported if n out of m
conditions are present. Decision trees are not the appropriate
tool for modeling this type of problems. Medical diagnostic
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decisions are a typical example of this kind of classification. If
4 out of 11 symptoms support diagnosis of a given disease, then
the corresponding classifier will generate 330 regions in an 11-
dimensional space for positive diagnosis only. That corresponds
to 330 decision rules.
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in a group. Finding a test x that maximizes

Gain(x) = Info(T )− Infox(T )

is the same as finding a test x that minimizes Infox(T ).
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