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Abstract: An instance based learning method called
the K-Nearest Neighbor or K-NN algorithm has been
used in many applications in areas such as data mining,
statistical pattern recognition, image processing. Suc-
cessful applications include recognition of handwriting,
satellite image and EKG pattern.
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Section 1: Definition 3

1. Definition

Suppose each sample in our data set has n attributes which we com-
bine to form an n-dimensional vector:

x = (x1, x2, . . . , xn).

These n attributes are considered to be the independent variables.
Each sample also has another attribute, denoted by y (the dependent
variable), whose value depends on the other n attributes x. We as-
sume that y is a categoric variable, and there is a scalar function, f ,
which assigns a class, y = f(x) to every such vectors.

We do not know anything about f (otherwise there is no need for
data mining) except that we assume that it is smooth in some sense.

We suppose that a set of T such vectors are given together with
their corresponding classes:

x(i), y(i) for i = 1, 2, . . . , T.

This set is referred to as the training set.
The problem we want to solve is the following. Supposed we are

given a new sample where x = u. We want to find the class that this
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Section 1: Definition 4

sample belongs. If we knew the function f , we would simply compute
v = f(u) to know how to classify this new sample, but of course we
do not know anything about f except that it is sufficiently smooth.

The idea in k-Nearest Neighbor methods is to identify k samples
in the training set whose independent variables x are similar to u,
and to use these k samples to classify this new sample into a class,
v. If all we are prepared to assume is that f is a smooth function, a
reasonable idea is to look for samples in our training data that are
near it (in terms of the independent variables) and then to compute
v from the values of y for these samples.

When we talk about neighbors we are implying that there is a dis-
tance or dissimilarity measure that we can compute between samples
based on the independent variables. For the moment we will con-
cern ourselves to the most popular measure of distance: Euclidean
distance.
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Section 1: Definition 5

The Euclidean distance between the points x and u is

d(x,u) =

√√√√ n∑
i=1

(xi − ui)2.

We will examine other ways to measure distance between points
in the space of independent predictor variables when we discuss clus-
tering methods.

The simplest case is k = 1 where we find the sample in the training
set that is closest (the nearest neighbor) to u and set v = y where y
is the class of the nearest neighboring sample.

It is a remarkable fact that this simple, intuitive idea of using
a single nearest neighbor to classify samples can be very powerful
when we have a large number of samples in our training set. It is
possible to prove that if we have a large amount of data and used an
arbitrarily sophisticated classification rule, we would be able to reduce
the misclassification error at best to half that of the simple 1-NN rule.

For k-NN we extend the idea of 1-NN as follows. Find the nearest
k neighbors of u and then use a majority decision rule to classify
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Section 2: Example 6

the new sample. The advantage is that higher values of k provide
smoothing that reduces the risk of over-fitting due to noise in the
training data. In typical applications k is in units or tens rather than
in hundreds or thousands. Notice that if k = n, the number of samples
in the training data set, we are merely predicting the class that has
the majority in the training data for all samples irrespective of u.
This is clearly a case of over-smoothing unless there is no information
at all in the independent variables about the dependent variable.

2. Example

A riding-mower manufacturer would like to find a way of classifying
families in a city into those that are likely to purchase a riding mower
and those who are not likely to buy one. A pilot random sample of
12 owners and 12 non-owners in the city is undertaken. The data are
shown in the table and displayed graphically.
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Section 2: Example 7

Sample Income (k-$) Lot size (k − ft2) Owner (1 yes, 0 no)
1 60 18.4 1
2 85.5 16.8 1
3 64.8 21.6 1
4 61.5 20.8 1
5 87 23.6 1
6 110.1 19.2 1
7 108 17.6 1
8 82.8 22.4 1
9 69 20 1
10 93 20.8 1
11 51 22 1
12 81 20 1
13 75 19.6 0
14 52.8 20.8 0
15 64.8 17.2 0
16 43.2 20.4 0
17 84 17.6 0
18 49.2 17.6 0
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Section 2: Example 8

Sample Income (k-$) Lot size (k − ft2) Owner (1 yes, 0 no)
19 59.4 16 0
20 66 18.4 0
21 47.4 16.4 0
22 33 18.8 0
23 51 14 0
24 63 14.8 0

How do we choose k? In data mining we use the training data to
classify the cases in the validation data using the data in the training
set to compute error rates for various choices of k. For our example we
have randomly divided the data into a training set with 18 cases and
a validation set of 6 cases. Of course, in a real data mining situation
we would have sets of much larger sizes. The validation set consists
of samples 6, 7, 12, 14, 19, 20 in the table. The remaining 18 samples
constitute the training data. The Figure displays the samples in both
the training and validation sets.

Notice that if we choose k = 1 we will classify in a way that is very
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Section 2: Example 10

sensitive to the local characteristics of our data. On the other hand if
we choose a large value of k we average over a large number of data
points and average out the variability due to the noise associated with
individual data points. If we choose k = 18 we would simply predict
the most frequent class in the training data set in all cases. This is
a very stable prediction but it completely ignores the information in
the independent variables.

In the following table, we show the misclassification error rate for
samples in the validation data set for different choices of k.

k 1 3 5 7 9 11 13 18
% Misclassification Error 33 33 33 33 33 17 17 50

We would choose k = 11 (or possibly 13) in this case. This choice
optimally trades off the variability associated with a low value of k
against the over-smoothing associated with a high value of k. It is
worth remarking that a useful way to think of k is through the con-
cept of ”effective number of parameters”. The effective number of
parameters corresponding to k is m/k where m is the number of sam-
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Section 3: Shortcomings of k-NN Algorithms 11

ples in the training data set. Thus a choice of k = 11 has an effective
number of parameters of about 2 and is roughly similar in the extent
of smoothing to a linear regression fit with two coefficients.

3. Shortcomings of k-NN Algorithms

There are two difficulties with the practical exploitation of the power
of the k-NN approach. First, while there is no time required to es-
timate parameters from the training data (since the method is not a
parametric one) the time to find the nearest neighbors in a large train-
ing set can be prohibitive. A number of ideas have been implemented
to overcome this difficulty. The main ideas are:

1. Reduce the time taken to compute distances by working in a
reduced dimension using dimension reduction techniques such
as principal components;

2. Use sophisticated data structures such as search trees to speed
up identification of the nearest neighbor. This approach often
settles for an ”almost nearest” neighbor to improve speed.
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Section 3: Shortcomings of k-NN Algorithms 12

3. Edit the training data to remove redundant or ”almost redun-
dant” points in the training set to speed up the search for the
nearest neighbor. An example is to remove samples in the train-
ing data set that have no effect on the classification because they
are surrounded by samples that all belong to the same class.

Second the number of samples required in the training data set to
qualify as large increases exponentially with the number of dimensions
n. This is because the expected distance to the nearest neighbor
goes up dramatically with n unless the size of the training data set
increases exponentially with n. This is of course due to the curse of
dimensionality.

The curse of dimensionality is a fundamental issue pertinent to
all classification, prediction and clustering techniques. This is why
we often seek to reduce the dimensionality of the space of predictor
variables through methods such as selecting subsets of the predictor
variables for our model or by combining them using methods such as
principal components, singular value decomposition and factor analy-
sis. In the artificial intelligence literature dimension reduction is often
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Section 4: An Example involving Samples with Categorical Features 13

referred to as factor selection.

4. An Example involving Samples with Categorical Features

In data mining, we often need to compare samples to see how similar
they are to each other. For samples whose features have continuous
values, it is customary to consider samples to be similar to each other
if the distances between them are small. Other than the most popular
choice of Euclidean distance, there are of course many other ways to
define distance.

In the case where samples have features with nominal values, the
situation is even more complicated. We will focus here on features
having only binary values. Let x = x1, x2, . . . , xn be an n-dimensional
vector, whose components take on only binary values 1 or 0.

Suppose x(i) and x(j) are two such vectors. We want to have a
quantitative measure of how similar these two vectors are to each
other. We start by computing the 2× 2 contingency table:
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x(j)

1 0
x(i) 1 a b

0 c d
where
1. a is the number of binary attributes of samples x(i) and x(j)

such that x
(i)
k = x

(j)
k = 1.

2. b is the number of binary attributes of samples x(i) and x(j)

such that x
(i)
k = 1 and x

(j)
k = 0.

3. c is the number of binary attributes of samples x(i) and x(j)

such that x
(i)
k = 0 and x

(j)
k = 1.

4. d is the number of binary attributes of samples x(i) and x(j)

such that x
(i)
k = x

(j)
k = 0.

Notice that each attribute contributes 1 to either a, b, c, or d. There-
fore we always have a + b + c + d = n.

For example, for the following two 8-dimensional vectors with bi-
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Section 4: An Example involving Samples with Categorical Features 15

nary feature values:

x(i) = {0, 0, 1, 1, 0, 1, 0, 1} x(j) = {0, 1, 1, 0, 0, 1, 0, 0}
we have

a = 2, b = 2, c = 1, and d = 3.

There are several similarity measures that have been defined in
the literature for samples with binary features. These measures make
use of the values in the contingency table as follow:

1. Simple Matching Coefficient (SMC)

Ssmc(x(i),x(j)) =
a + d

n

2. Jaccard Coefficient

Sjc(x
(i),x(j)) =

a

a + b + c

3. Rao’s Coefficient

Src(x(i),x(j)) =
a

n
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For the previous given 8-dimensional samples, these measures of
similarity will be Ssmc(x(i),x(j)) = 5/8 = 0.625, Sjc(x

(i),x(j)) =
2/5 = 0.4, Src(x(i),x(j)) = 2/8 = 0.25.

Now let us consider an example of using the k-NN method for a
data set involving samples with categorical feature values.

Assume we have the following six 6-dimensional categorical sam-
ples:

X1 = {A,B,A, B,C,B}, X4 = {B,C,A, B, B, A},
X2 = {A,A, A,B,A, B}, X5 = {B,A,B, A,C,A},
X3 = {B,B,A, B, A,B}, X6 = {A,C, B, A,B,B}.

Suppose they are gathered into two clusters

C1 = {X1,X2,X3} C2 = {X3,X4,X5}
We want to know how to classify the new sample Y = {A,C, A,B,C,A}.

To apply the k-NN algorithm, we first find all the distances be-
tween the new sample and the other samples already clustered. Using
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Section 4: An Example involving Samples with Categorical Features 17

the SMC measure, we can find similarities instead of distances be-
tween samples.

Ssmc(Y,X1) = 4/6 = 0.667 Ssmc(Y,X4) = 4/6 = 0.667

Ssmc(Y,X2) = 3/6 = 0.500 Ssmc(Y,X5) = 2/6 = 0.333
Ssmc(Y,X3) = 2/6 = 0.333 Ssmc(Y,X6) = 2/6 = 0.333

Using the 1-NN rule (k = 1), the new sample cannot be classified
because there are two samples (X1 and X4) with the same, highest
similarity, and one of them is in class C1 and the other in the class
C2. On the other hand, using the 3-NN rule and selecting the three
largest similarities in the set, we see that two samples (X1 and X2)
belong to the class C1 and only one sample to the class C2. Therefore
using a simple voting (majority) rule we can classify the new sample
Y into class C1.
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