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Abstract: A statistical classifier called Naive Bayesian
classifier is discussed. This classifier is based on the
Bayes’ Theorem and the maximum posteriori hypothe-
sis. The naive assumption of class conditional indepen-
dence is often made to reduce the computational cost.
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1. Introduction

Bayesian classifiers are statistical classifiers. They can predict class
membership probabilities, such as the probability that a given sample
belongs to a particular class.

Bayesian classifier is based on Bayes’ theorem. Naive Bayesian
classifiers assume that the effect of an attribute value on a given class
is independent of the values of the other attributes. This assumption
is called class conditional independence. It is made to simplify the
computation involved and, in this sense, is considered ”naive”.

1.1. Bayes’ Theorem

Let X = {x1, x2, . . . , xn} be a sample, whose components represent
values made on a set of n attributes. In Bayesian terms, X is con-
sidered ”evidence”. Let H be some hypothesis, such as that the data
X belongs to a specific class C. For classification problems, our goal
is to determine P (H|X), the probability that the hypothesis H holds
given the ”evidence”, (i.e. the observed data sample X). In other
words, we are looking for the probability that sample X belongs to
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class C, given that we know the attribute description of X.
P (H|X) is the a posteriori probability of H conditioned on X.

Fox example, suppose our data samples have attributes: age and in-
come, and that sample X is a 35-year-old customer with an income of
$40,000. Suppose that H is the hypothesis that our customer will buy
a computer. Then P (H|X) is the probability that customer X will
buy a computer given that we know the customer’s age and income.

In contrast, P (H) is the a priori probability of H. For our example,
this is the probability that any given customer will buy a computer,
regardless of age, income, or ny other information. The a posteriori
probability P (H|X) is based on more information (about the cus-
tomer) than the a priori probability, P (H), which is independent of
X.

Similarly, P (X|H) is the a posteriori probability of X conditioned
onH. That is, it is the probability that a customer X, is 35 years
old and earns $40,000, given that we know the customer will buy a
computer.

P (X) is the a priori probability of X. In our example, it is the
probability that a person from our set of customers is 35 years old
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and earns $40,000.
According to Bayes’ theorem, the probability that we want to

compute P (H|X) can be expressed in terms of probabilities P (H),
P (X|H), and P (X) as

P (H|X) =
P (X|H) P (H)

P (X)
,

and these probabilities may be estimated from the given data.

2. Naive Bayesian Classifier

The naive Bayesian classifier works as follows:

1. Let T be a training set of samples, each with their class la-
bels. There are k classes, C1, C2, . . . , Ck. Each sample is rep-
resented by an n-dimensional vector, X = {x1, x2, . . . , xn}, de-
picting n measured values of the n attributes, A1, A2, . . . , An,
respectively.

2. Given a sample X, the classifier will predict that X belongs to
the class having the highest a posteriori probability, conditioned
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on X. That is X is predicted to belong to the class Ci if and
only if

P (Ci|X) > P (Cj |X) for 1 ≤ j ≤ m, j 6= i.

Thus we find the class that maximizes P (Ci|X). The class Ci for
which P (Ci|X) is maximized is called the maximum posteriori
hypothesis. By Bayes’ theorem

P (Ci|X) =
P (X|Ci) P (Ci)

P (X)
.

3. As P (X) is the same for all classes, only P (X|Ci)P (Ci) need
be maximized. If the class a priori probabilities, P (Ci), are
not known, then it is commonly assumed that the classes are
equally likely, that is, P (C1) = P (C2) = . . . = P (Ck), and
we would therefore maximize P (X|Ci). Otherwise we maximize
P (X|Ci)P (Ci). Note that the class a priori probabilities may
be estimated by P (Ci) = freq(Ci, T )/|T |.

4. Given data sets with many attributes, it would be computation-
ally expensive to compute P (X|Ci). In order to reduce compu-
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tation in evaluating P (X|Ci) P (Ci), the naive assumption of
class conditional independence is made. This presumes that the
values of the attributes are conditionally independent of one an-
other, given the class label of the sample. Mathematically this
means that

P (X|Ci) ≈
n∏

k=1

P (xk|Ci).

The probabilities P (x1|Ci), P (x2|Ci), . . . , P (xn|Ci) can easily
be estimated from the training set. Recall that here xk refers to
the value of attribute Ak for sample X.
(a) If Ak is categorical, then P (xk|Ci) is the number of samples

of class Ci in T having the value xk for attribute Ak, divided
by freq(Ci, T ), the number of sample of class Ci in T .

(b) If Ak is continuous-valued, then we typically assume that
the values have a Gaussian distribution with a mean µ and
standard deviation σ defined by

g(x, µ, σ) =
1√
2πσ

exp− (x− µ)2

2σ2
,
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so that

p(xk|Ci) = g(xk, µCi
, σCi

).

We need to compute µCi
and σCi

, which are the mean and
standard deviation of values of attribute Ak for training
samples of class Ci.

5. In order to predict the class label of X, P (X|Ci)P (Ci) is eval-
uated for each class Ci. The classifier predicts that the class
label of X is Ci if and only if it is the class that maximizes
P (X|Ci)P (Ci).

3. Example: Using the Naive Bayesian Classifier

We will consider the following training set.
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RID age income student credit Ci: buy
1 youth high no fair C2: no
2 youth high no excellent C2: no
3 middle-aged high no fair C1: yes
4 senior medium no fair C1: yes
5 senior low yes fair C1: yes
6 senior low yes excellent C2: no
7 middle-aged low yes excellent C1: yes
8 youth medium no fair C2: no
9 youth low yes fair C1: yes
10 senior medium yes fair C1: yes
11 youth medium yes excellent C1: yes
12 middle-aged medium no excellent C1: yes
13 middle-aged high yes fair C1: yes
14 senior medium no excellent C2: no

The data samples are described by attributes age, income, student,
and credit. The class label attribute, buy, tells whether the person
buys a computer, has two distinct values, yes (class C1) and no (class
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C2).
The sample we wish to classify is

X = (age = youth, income = medium, student = yes, credit = fair)

We need to maximize P (X|Ci)P (Ci), for i = 1, 2. P (Ci), the a
priori probability of each class, can be estimated based on the training
samples:

P (buy = yes) =
9
14

P (buy = no) =
5
14

To compute P (X|Ci), for i = 1, 2, we compute the following condi-
tional probabilities:

P (age = youth|buy = yes) =
2
9

P (age = youth|buy = no) =
3
5

P (income = medium|buy = yes) =
4
9
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P (income = medium|buy = no) =
2
5

P (student = yes|buy = yes) =
6
9

P (student = yes|buy = no) =
1
5

P (credit = fair|buy = yes) =
6
9

P (credit = fair|buy = no) =
2
5

Using the above probabilities, we obtain

P (X|buy = yes) = P (age = youth|buy = yes)
P (income = medium|buy = yes)
P (student = yes|buy = yes)
P (credit = fair|buy = yes)

=
2
9

4
9

6
9

6
9

= 0.044.
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Similarly,

P (X|buy = no) =
3
5

2
5

1
5

2
5

= 0.019

To find the class that maximizes P (X|Ci)P (Ci), we compute

P (X|buy = yes)P (buy = yes) = 0.028

P (X|buy = no)P (buy = no) = 0.007
Thus the naive Bayesian classifier predicts buy = yes for sample X.

3.1. Laplacian Correction

The Laplacian correction (or Laplace estimator) is a way of dealing
with zero probability values.

Recall that we use the estimation

P (X|Ci) ≈
n∏

k=1

P (xk|Ci).

based on the class independence assumption. What if there is a class,
Ci, and X has an attribute value, xk, such that none of the samples in
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Ci has that attribute value? In that case P (xk|Ci) = 0, which results
in P (X|Ci) = 0 even though P (xk|Ci) for all the other attributes in
X may be large.

In our example, for the attribute-value pair student = yes of X,
we need to count the number of customers who are students, and for
which buy = yes (which contributes to P (X|buy = yes)) and the num-
ber of customers who are students and for which buy = no (which
contributes to P (X|buy = no)). But what if , say, there are no train-
ing samples representing students for the class buy = no resulting in
P (X|buy = no) = 0? A zero probability cancels the effects of all of
the other a posteriori probabilities on Ci.

There is a simple trick to avoid this problem.We can assume that
our training set is so large that adding one to each count that we need
would only make a negligible difference in the estimated probabilities,
yet would avoid the case of zero probability values. This technique
is know as Laplacian correction (or Laplace estimator). If we have q
counts to which we each add one, then we must remember to add q to
the corresponding denominator used in the probability calculation.

As an example, suppose that for the class buy = yes in some train-
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ing set, containing 1, 000 samples, we have 0 with income = low, 990
samples with income = medium, and 10 samples with income = high.
The probabilities of these events, without the Laplacian correction,
are 0, 0.990 (from 990/1000), and 0.010 (from 10/1000), respectively.
Using the Laplacian correction for the three quantities, we pretend
that we have 1 more sample for each income-value pair. In this way,
we instead obtain the following probabilities (rounded up to three
decimal places):

1
1003

= 0.001,
991
1003

= 0.988,
11

1003
= 0.011,

respectively. The ”corrected” probability estimates are close to their
”uncorrected” counterparts, yet the zero probability value is avoided.

4. Remarks on the Naive Bayesian Classifier

1. Studies comparing classification algorithms have found that the
naive Bayesian classifier to be comparable in performance with
decision tree and selected neural network classifiers.
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2. Bayesian classifiers have also exhibited high accuracy and speed
when applied to large databases.
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