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1. Representation of Raw Data

Every sample in our data collection is described with many features.
There are many different types of values for every feature. The most
common two types are: numeric and categorical.

Numeric values include integer and real-value variables, such as
trade volumes and intraday-high stock prices. An attribute with nu-
meric values has two important properties: its values have an order
relation (2 < 5 and 5 < 7), and a distance relation (distance between
2.3 and 4.2 = d(2.3, 4.2) = 1.9).

Categorical variable have neither of these relations. Examples of
categorical variables are eye color, sex, or country of citizenship. Two
values of a categorical variable can be either equal or not equal (i.e.
only the equality relation is supported). For example, Barack Obama
and Hillary Clinton have the opposite sex but have the same country
of citizenship. A categorical variable with two values can be converted
to a numeric binary variable with two values: 0 or 1. A categorical
variable with N values can be converted to a numeric binary variable
with N values. For example, if the variable eye-color has 4 values:
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black, blue, green and brown, they can be coded with 4 binary digits.

Featurevalue Code
Black 1000
Blue 0100
green 0010
Brown 0001

Another way is to classify variable, based on its values, as contin-
uous or discrete.

Discrete variables are measured using one of two kinds of non-
metric scales – nominal and ordinal.

A nominal scale is an order-less scale, which uses different symbols,
characters, or numbers to represent the different states (values) of the
variable. For example, in a utility company, customers are identified
as residential, commercial, and industrial. These values can be coded
alphabetically as A, B, and C, or numerically as 1, 2, and 3 (no or-
dering or distance measure related to these values). Another example
of a numeric nominal scale is our 9-digit social security numbers.
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An ordinal scale consists of ordered,discrete gradations or rank-
ings. An ordinal variable is a categorical variable for which an order
relation is defined but not a distance measure. An example is the
course grade of a student. An ’A’ is certainly better than a ’B’, but
how much better is not clearly defined. Ordinal variable are closely
related to the linguistic or fuzzy variables commonly used in spoken
English: e.g.AGE (with values young, middle-aged, and old) and IN-
COME LEVEL (with values low, middle-class, upper-middle-class,
and rich).

One can also classify data based on its relation with time. Data
that do not change with time are called static data. One the other
hand attribute values that change with time are called dynamic or
temporal data. Special consideration is need to treat dynamic data.

1.1. The Curse of the Dimensionality

In data mining problems, data samples often have a large number of
features or attributes. If each sample can be represented as a vector in
a vector space, then the vector is defined in a very high dimensional
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space.[8] This high dimensional data set causes problems known as
the ”curse of dimensionality”. The curse of dimensionality is a term
coined by Richard Bellman (a mathematician celebrated for his in-
vention of dynamic programming in 1953) to describe the problem
caused by the exponential increase in volume associated with adding
extra dimensions to a (mathematical) space.

The curse of dimensionality is a significant obstacle to solving dy-
namic optimization problems by numerical backwards induction when
the dimension of the ’state variable’ is large. It also complicates ma-
chine learning problems (used for example in data mining) that involve
learning a ’state-of-nature’ (maybe infinite distribution) from a finite
(low) number of data samples in a high-dimensional feature space.

The properties of high-dimensional spaces often appear counter-
intuitive because our experience with the physical world is in a low-
dimensional space (of 2 or 3). Four important properties of high-
dimensional data are often the guidelines in the interpretation of input
data and data mining results:

• The size of a data set yielding a given density of data points in
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an n-dimensional space increases exponentially with dimensions.
Because if a one-dimensional sample containing m data points
has a satisfactory level of density, then to achieve the same den-
sity of points in n dimensions, we need mn data points. For
example, if 100 data points gives a sufficiently dense samples
in one dimension, then to obtain the same density in a sample
space of 10 dimensions, we will need 10010 = 1020 data samples!
Because of the curse of the dimensionality, even for the largest
real-world data sets, the density is often still relatively low, and
may be unsatisfactory for data mining purposes.

• As the dimensionality, n, increases, so does the radius needed to
enclose a given fraction of the data points in an n-dimensional
space. Suppose all the data points in an n-dimensional space
lies within the n-dimensional hypercube. For a given fraction of
data points, p, the edge length, en(p), of a hypercube enclosing
that fraction of data points is given by

en(p) = p1/n.

For example if one wishes to enclose 10% of the sample (p =
Toc JJ II J I Back J Doc Doc I
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0.1), the corresponding edge for a two-dimensional space will be
e2(0.1) = 0.32, for a three-dimensional space e3(0.1) = 0.46, for
a 10-dimensional space e10(0.1) = 0.80, and for a 15-dimensional
space e15(0.1) = 0.96.
This shows that a large neighborhood is required to capture even
a small portion of the data in a high-dimensional space.

• Almost every point is closer to an edge than to another sample in
a high-dimensional space. For a sample of size m, the expected
distance d between data points in an n-dimensional space is

dn(m) =
1
2

(
1
m

)1/n

.

For example, for a two-dimensional space with 10,000 points the
expected distance is d2(10000) = 0.005, for a 10-dimensional
space with the same number of sample points d10(10000) =
0.199, and for a 100-dimensional space d100(10000) = 0.456.
Keep in mind that the maximum distance between any point to
the edge occurs at the center of the cube, and it is 0.5 irrespec-
tive of the dimensionality.
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Section 2: Characteristics of Raw Data 9

• Almost every point is an outlier.

These rules have serious consequences when dealing with a finite
number of samples in a high-dimensional space. From properties (1)
and (2) we see the difficulty in making local estimates for high- dimen-
sional samples; we need more sample points to establish the required
data density for performing planned mining activities. Properties (3)
and (4) indicate the difficulty of predicting a response at a given point,
since any new point will on the average be closer to an edge than to
the training examples in the central part.

2. Characteristics of Raw Data

Raw data typically have low quality. Many experts in data mining
will agree that the most critical steps in a data-mining process is the
preparation and transformation of the initial data set. This task often
receives little attention in the research literature, mostly because it is
considered too application-specific. In the real world, more effort is
expended preparing data than applying data-mining methods.

There are two central tasks for the preparation of data:
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1. To organize data into standard relational table form.

2. To prepare data sets that lead to the best data-mining perfor-
mances.

3. Transforming of Raw Data

We will review some general types of transformation of data that are
not problem-dependent.

1. Normalizations
Some data mining methods, typically those that are based on
distance computation between points in an n-dimensional space,
may need normalized data for best results. If the values are not
normalized, the distance measure will overweight those features
that have, on an average, larger values. The measured values
can be scaled to a specific range, e.g., [-1, 1] or [-1, 1]. Here are
three simple and effective normalization techniques:
a Decimal scaling Decimal scaling moves the decimal point but

still preserving most of the original digit value. The typical
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scale maintains the values in the range of [-1, 1]. Supposed
v(i) is the value of the feature v for sample i. First the max-
imum |v(i)| in the data set, and then the decimal point is
moved until the new, scaled, maximum absolute value is just
less than 1. The same scaling is then applied to all other v(i).
That is, we define scaled variables

v′(i) = v(i)/10k

such that k is the smallest integer such that maxi |v′(i)| < 1.
Note that v′ has exactly the same unit as v, they are scaled
differently only.
For example, if the largest value in the data set is 455 and
the smallest value is −834, then the value with the largest
magnitude is −834. It is scaled to −0.834 by dividing it by
1, 000. All other values of the feature are then divided by
the same factor. The scaled values then vary from −0.834 to
0.455.

b Min-max normalization Sometimes there is a problem with
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the above normalization. Suppose that the data for a feature v
are in a range between 150 and 250. The above normalization
will yield data in the narrow subinterval [0.15, 0.25] of the
entire range. To obtain better distribution of values on a
whole, normalized interval, e.g., [0, 1], we can use the min-
max formula

v′(i) =
v(i)−mini v(i)

maxi v(i)−mini v(i)

where the minimum and the maximum values for the feature
v are computed on a set automatically, or they are estimated
by an expert in a given domain. Note that v′ now is dimen-
sionless.
Similar transformation may be used for the normalized inter-
val [−1, 1]. If v” is the new variable then we assume that it is
related linearly to v′:

v” = av′ + b.

To find a and b, we require that when v′ = 0, v” = −1, and
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when v′ = 1, v” = 1. Thus we have two equations:

−1 = b 1 = a + b

from which we have a = 2 and b = −1. Thus the relation is

v” = 2v′ − 1.

c standard deviation normalization First for a feature v, the
mean value mean(v) and the standard deviation sd(v) are
computed for the entire data set. Then for each sample i, the
feature value is transformed using the equation

v′(i) =
v(i)−mean(v)

sd(v)
.

For example if the initial set of values of the attribute is
v = {1, 2, 3}, then mean(v) = 2, sd(v) = 1, and the set of
normalized values is v′ = {−1, 0, 1}.

2. Data smoothing Simple smoothers can be specified that average
similar measured values. For example, if the set of values for the
given feature F is {0.93, 1.01, 1.001, 3.02, 2.99, 5.03, 5.01, 4.98},
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then the smoothed values may be {1.0, 1.0, 1.0, 3.0, 3.0, 5.0, 5.0, 5.0}.
Smoothing reduces the number of real values for a feature and
thus reduces the dimensionality of the data space and thus im-
prove data mining performance.

3. Differences and ratios Two simple transformations, differences
and ratios, could improve data mining performances by better
specifying the goal of data mining.
Instead of optimizing the output s(t + 1) of a data mining pro-
cess, it may be more effective to set the goal of a relative move
from current value to a final optimal s(t + 1)− s(t). The range
of values for the relative moves is generally much smaller.
Sometimes using s(t + 1)/s(t) instead of s(t + 1) as the output
of a data mining process may improve performance.
Difference and ratios can also be used to transform not only
output values but input values as well. For example, in many
medical data sets, there are two features of a patient, height and
weight, that are taken as input parameters. Many applications
show that better diagnostic results are obtained when an initial
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transformation is performed using the body-mass index (BMI),
which is the weighted ratio between weight and height. This
composite feature (which is essentially a ratio) is better than
the original parameters to describe some of the characteristics
of the patient, such as whether or not the patient is overweight.

4. Missing Values in Data

For many real-world applications, many samples may have feature
values missing. If the number of complete samples is sufficiently large,
then incomplete samples may be simply deleted from the data before
data mining is performed.

It is not uncommon that a large fraction of the samples have miss-
ing values, in that case we need to use data mining methods that are
insensitive and can deal with missing values, or to find ways to fill-in
the missing values.

Sometimes a data miner, together with the domain expert, can
manually examine samples that have no values and enter a reason-
able, probable, or expected value, based on domain experience. This
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method works only for small numbers of missing values and relatively
small data sets. It is possible to introduce error into the data set.

There are three simple automatic methods to replace missing val-
ues:

1. Replace all missing values with a single global constant (its value
is highly application-dependent).

2. Replace a missing value with its feature mean.
3. Replace a missing value with its feature mean for the given class

(for classification problems where samples are classified in ad-
vance).

Problems may result due to incorrect values and bias introduced into
the data.

One other way to handle samples with missing values is to treat
them as ”don’t care” values. That is we suppose that these values do
not have any influence on the final data-ming results. In that case, a
sample with the missing value may be extended to the set of artificial
samples, where, for each new sample, the missing value is replaced
with one of the possible feature values.
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This approach has the problem that the number of samples is made
much larger. For example, if one three-dimensional sample X is given
as X = {1, ?, 3}, where the second value is missing, the process will
generate 5 artificial samples if the feature domain is [0, 1, 2, 3, 4]

{1, 0, 3}, {1, 1, 3}, {1, 2, 3}, {1, 3, 3}, {1, 4, 3}
Another approach is generate a predictive model, based on tech-

niques such as regression, Bayesian formalism, clustering, or decision-
tree induction, to predict each of the missing values.

5. Time-Dependent Data

Real-world problems with time dependencies required special prepa-
ration and transformation of data. We will start with the simplest
case – a single feature measured over time. This feature has a series
of values measured over fixed time units. For example, a temperature
reading measured every hour, or the price of a stock recorded at the
end of every day. This classical univariate time-series for the variable
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X can be expressed as

X = {t(1), t(2), t(3), . . . , t(n)}
where t(n) is the most recent value.

For many time-series problems, the goal is to predict t(n+1) from
previous values of the feature. One of the most important steps in
preprocessing such data is the specification of a window or a time lag.

For example, if the time series consists of eleven measurements

X = {t(0), t(1), t(2), t(3), t(4), t(5), t(6), t(7), t(8), t(9), t(10)}
and if the window is chosen to be 5, then the input data is reorganized
into a tabular form with 6 samples, which is more convenient for data
mining.
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Sample M1 M2 M3 M4 M5 Next Value
1 t(0) t(1) t(2) t(3) t(4) t(5)
2 t(1) t(2) t(3) t(4) t(5) t(6)
3 t(2) t(3) t(4) t(5) t(6) t(7)
4 t(3) t(4) t(5) t(6) t(7) t(8)
5 t(4) t(5) t(6) t(7) t(8) t(9)
6 t(5) t(6) t(7) t(8) t(9) t(10)

Instead of predicting the next value, the problem can be modified
to predict values in the future several time units in advance. That
is, given the values t(n− i), . . . , t(n), we want to predict the value of
t(n+j) for fixed given positive integers i and j. Note that the window
size gives the number of artificial feature in a tabular representation of
the time series, and it is given by i + 1. The total number of samples
in the standard tabular form is given by the total of original data
points minus i + j.

In the previous example, taking i = 4 (so that the window size is
5) and j = 3, the preprocessed data can be put in standard tabular
form as shown.
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Sample M1 M2 M3 M4 M5 Next Value
1 t(0) t(1) t(2) t(3) t(4) t(7)
2 t(1) t(2) t(3) t(4) t(5) t(8)
3 t(2) t(3) t(4) t(5) t(6) t(9)
4 t(3) t(4) t(5) t(6) t(7) t(10)

Of course, the more further out in the future, the more difficult
and less reliable is the forecast.

The goal for a time series can easily be changed from predicting
the next value in the series to classification into one of predefined
categories. For example, instead of predicting the value of t(n+1), the
new classified output will be binary: T for t(n + 1) ≥ thresholdvalue
and F if t(n + 1) < thresholdvalue.

The best choice of window size is obviously problem-specific. The
answer depends on the knowledge of the application and past experi-
ences.

Two small a window size means that we are not using enough of
the most relevant recent data to make a prediction. Using too large
a window means that (1) we are using too many older values of a
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feature which may be historical relics that are no longer relevant, (2)
the dimensionality of the problem is large.

Besides standard tabular representation of time series, sometimes
it is better to perform further preprocessing on the data. It may be
better to predict the difference t(n+1)−t(n) or the ratio t(n+1)/t(n)
than on the value t(n + 1). When differences or ratios are used to
specify the goal, features measuring the differences or ratios for input
features may also be advantageous.

Time-dependent samples are specified in terms of a goal and a
time lag or window of size m. One way of summarizing features in
the data set is to average them, producing ”moving averages”. A
single average summarizes the most recent m features values for each
sample, and for each increment in time moment i, its value is

MA(i,m) =
1
m

i∑
j=i−m+1

t(j).

Knowledge of the application can aide in specifying reasonable sizes
for m. Error estimation should validate these choices.
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Moving averages weight all time points equally in the average.
Typical examples are moving averages in the stock market such as
200-day moving average for DOW and NASDAQ. The objective is to
smooth neighboring points by a moving average to reduce the random
variation and noise components.

Another type of average is an exponential moving average (EMA)
that gives more weight to the most recent time points. It is defined
recursively as

EMA(i,m) = p t(i)+(1−p) EMA(i−1,m−1), EMA(i, 1) = t(i)

where p is a fixed parameter value between 0 and 1. Recursion starts
with m = 1, then m = 2, etc. until the final value of m.

EMA(i, 1) = t(i)

EMA(i, 2) = p t(i) + (1− p) EMA(i− 1, 1)
= p t(i) + (1− p) t(i− 1)

EMA(i, 3) = p t(i) + (1− p) EMA(i− 1, 2)
= p t(i) + (1− p) (p t(i− 1) + (1− p) t(i− 2))
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The larger p is, the more the the most recent time points are
counted in the EMA. In the limit p = 1, we have EMA(i,m) = t(i).
In the opposite limit of p = 0, we see that only the most distant point
within the window counts

EMA(i, m) = EMA(i− 1,m− 1) = EMA(i− 2,m− 2) = . . .

= EMA(i−m + 1, 1) = t(i−m + 1).

As usual, application knowledge or empirical validation determines
the value of p. The exponential moving average has performed very
well for many finance and business-related applications, producing
results superior to the moving average.

A moving average summarizes the recent past, but spotting a
change in the trend of the data may additionally improve forecasting
performances. Characteristics of a trend can be measured by compos-
ing features that compare recent measurements to those of the more
distant past. Three simple comparative features are

1. t(i)−MA(i,m), the difference between the current value and a
moving average;
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2. MA(i,m) − MA(i − k, m), the difference between two moving
averages, usually of the same window size, and

3. t(i)/MA(i, m), the ratio between the current value and a moving
average, which may be preferred for some applications.

In general, the main components of the summarizing features for
a time series are

1. current values,

2. smoothed values using moving averages, and

3. derived trends, differences, and ratios.
The immediate extension of a univariate time series is to a multi-

variate one. Instead of having a single measured value at time i, t(i),
multiple measurements, a(i) and b(i), etc. are taken at the same time.
Typically each series is transformed into features, and the values of
the features at each distinct time i are merged into a single sample.
The resulting data in standard tabular form are shown here in the
case of 2 features assuming a window size of 3.
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Time a b
1 5 117
2 8 113
3 4 116
4 9 118
5 10 119
6 12 120

Sample a(n− 2) a(n− 1) a(n) b(n− 2) b(n− 1) b(n)
1 5 8 4 117 113 116
2 8 4 9 113 116 118
3 4 9 10 116 118 119
4 9 10 12 118 119 120

In real-world applications, one can often find hybrid problems hav-
ing both time series and features that are not dependent on time. In
these cases, standard procedures for time-series transformation and
summarization of attributes are performed. High dimensions of the
resulting data can be reduced at the next phase of a data-ming pro-
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cess: data reduction.
Some data sets have features that depends on several times that are

attributes of described entities. One important class of data belonging
to this type is survival data. Survival data are data concerning how
long it takes for a particular event to happen, e.g. how long does a
patient lives, how long before a machine breaks done, how long before
a customer arrives at a bank to seek service from a bank teller.

There are two main characteristic of survival data. The first one
ic called censoring. It can happen that a certain event has not yet
happen by the end of the study period. So, for some patients in
a medical trial we might know that the patient was still alive after
5 years, but we do not know when the patient died. This sort of
observation is called a censored observation.

The second characteristic is that the input values are time-dependent.
If a smoker quits smoking or starts with a new drug during the study,
it is important to know what data to include and how to represent
these changes in time. Data-mining analysis for these types of prob-
lems concentrates on the survivor function or the hazard function.
The survivor function is the probability of the survival time being
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greater than the time t. The hazard function indicates how likely a
failure of an industrial component is at time t, given that a failure has
not occurred before time t.

6. Outlier Analysis

Often in large data sets, there exist samples that do not comply with
the general behavior of the data model. Such samples, which are
significantly different or inconsistent with the remaining set of data,
are called outliers. Outliers can be caused by measurement errors or
they may be the result of inherent data variability. For example, if,
in the database, the number of children for one person is 25, this may
be due to an entry mistake or it could be correct and represent real
variability of the given attribute. The problem of defining outliers is
nontrivial, especially for high dimensional samples.

Many data-mining algorithms try to minimize the influence of out-
liers on the final model, or to eliminate them in the preprocessing
phase. This approach may work well if one is interested in looking
for general trends hidden in the data. Outliers are non-representative
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enough to influence the outcome.
On the other hand, some data-mining application are focused on

outlier detection. It is then essential to retain the outliers. Typical ap-
plications include detecting fraudulent credit transactions, epidemic
spreading of diseases, and the prediction of collapse of the stock mar-
ket.

6.1. Statistical Outlier Detection

First let us consider one-dimensional samples. The simplest approach
to outlier detection is to use statistics. Assuming that the distribution
of values is known, it is necessary to find basic statistical parameters
such as mean value, µ and variance, σ. Based on these values and the
expected number of outliers, it is possible to establish the threshold
value, θ, as a function of the variance. Samples out of the threshold
value are candidates for outliers. The main problem with this ap-
proach is that the data distribution is often unknown in real-world
applications.

To illustrate this method, suppose we have the following data set
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representing the feature Age with 20 different sample:

{3, 56, 23, 39, 156, 52, 41, 22, 9, 28, 139, 31, 55, 20,−67, 37, 11, 55, 45, 37}
We find that µ = 39.6 and σ = 45.89 If we select the threshold value
for normal distribution of data as

θ = µ± 2σ

then, all data that are out of the range [−52.2, 131.4] will be potential
outliers. Additional knowledge of the characteristics of the feature
(Age cannot be negative) eliminates one sample point, and reduces
the range to [0, 124.2]. [2] So there are three values that are outliers
based on our criteria: 156, 139 and −67. With absolute certainty we
know that the negative sign is due to typographical error. Such error
very likely also introduce extra digits in the first two values.

6.2. Distance-based Outlier Detection

Distance-based outlier detection is a second method that eliminates
some of the shortcomings of the statistics method. This method is ap-
plicable to multidimensional samples while statistical method analyze
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only a single dimension, or several dimensions, but separately.
Distance-based outliers are those samples which do not have enough

sample points as its neighbors. More precisely, given a data set S, a
sample s(i) is an outlier if at least a fraction p of the samples lies at a
distance greater than d away from it. Parameters p and d are either
given in advance using knowledge about the data, or their values may
be adjusted during preprocessing by trial-and-error.

To illustrate this approach, we consider a set S of m = 7 two-
dimensional sample points:

S = {(2, 4), (3, 2), (1, 1), (4, 3), (1, 6), (5, 3), (4, 2)}
and choose p = 4/(m− 1) = 4/6 and d = 3.

We first compute the Euclidean distances among these sample
points, d(s(i), s(j)) = ‖s(i) − s(j)‖2, as shown in the table.
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Sample s(1) s(2) s(3) s(4) s(5) s(6) s(7)

s(1) 0.000 2.236 3.162 2.236 2.236 3.162 2.828
s(2) 2.236 0.000 2.236 1.414 4.472 2.236 1.000
s(3) 3.162 2.236 0.000 3.606 5.000 4.472 3.162
s(4) 2.236 1.414 3.606 0.000 4.242 1.000 1.000
s(5) 2.236 4.472 5.000 4.242 0.000 5.000 5.000
s(6) 3.162 2.236 4.472 1.000 5.000 0.000 1.414
s(7) 2.828 1.000 3.162 1.000 5.000 1.414 0.000

Using the table, we can compute for each sample point the fraction
of points lying at a distance greater than d = 3 away from it. The
results are shown in the following table.
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Sample p

s(1) 2/6
s(2) 1/6
s(3) 5/6
s(4) 2/6
s(5) 5/6
s(6) 3/6
s(7) 2/6

For the chosen threshold value of p = 4/6, we see that s(3) and
s(5) are outliers.

In two-dimension, one can easily obtain the same result visually by
graphing the points. However in higher dimensions, graphical meth-
ods are practically impossible and analytical approaches are necessary.

6.3. Deviation-based Techniques

Deviation-based techniques are the third class of outlier-detection
methods. These methods define the basic characteristics of the sam-
ple set, and all samples that deviate from these characteristics are

Toc JJ II J I Back J Doc Doc I



Section 6: Outlier Analysis 33

outliers.
An example is the sequential-exception technique which is based

on the use of a dissimilarity function. For a given set of m samples,
a possible dissimilarity function is the total variance of the sample
set. The task is to find the smallest subset of samples whose removal
results in the greatest reduction of the dissimilarity function for the
residual set.

Due to the combinational explosion of different selection of the set
of potential outliers (the so called exception set), the problem is NP-
hard. If we settle for a less-than-optimal answer, the algorithm’s com-
plexity can be reduced to linear using a sequential approach. Using
the greedy method, and the algorithm reduces the size sequentially,
sample by sample (or subset by subset) by selecting at each step the
one that causes the greatest decrease in the total variance.
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