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Abstract: Regression is a powerful method for making
prediction of the value of a continuous response variable
based on the values of one or more continuous predictor
(or independent) variables.
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1. Introduction

Numeric prediction is the task of predicting continuous values of a
dependent (or response) variable, Y , for given continuous values of one
or more independent (or predictor) variables, X1, X2, . . . , Xn. The
response variable is what we want to predict for a given sample. The
predictor variables are the attributes of interest describing the sample.
The most widely used approach for numeric prediction is regression.

Several software packages exist to solve regression problems. Ex-
amples include SAS (www.sas..com), SPSS (www.spss.com), and S-
Plus (www.insightful.com).

2. Linear Regression

In regression, we are looking for a relationship between the response
variable, Y , and the predictor variables, X1, X2, . . . , Xn. Such a rela-
tion is called a regression equation, which typically involves a number
of unknown continuous parameters. The most widely used equation
has the following linear form:

Y = α + β1X1 + β2X2 + . . . + βnXn
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where α, β1, . . . , βn are n+1 unknown parameters of the linear model.
These unknown parameters, known as regression coefficients, are to
be determined from a set of training data samples.

We assume there are m samples in the training set. Each sam-
ple has n independent predictor values, (x1, x2, . . . , xn), and a corre-
sponding dependent response value, y. Applying the above equation
to each of the given samples yields a set of linear equations:

yj = α + β1x1j + β2x2j + . . . + βnxnj + εj , j = 1, . . . ,m.

where εj is the error of regression for sample j. This error term ac-
counts for deviation from a relationship between the response variable,
Y , and the predictor variables, X1, X2, . . . , Xn because of inaccuracies
in the model and the random nature of real data.

Of course typically we have m � n. The case where there are
more than one predictor variable (i.e. n > 1) is known as multiple
linear regression. If there is only one predictor variable (i.e. n = 1),
then we have the simpler case of straight-line linear regression.
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2.1. Straight-Line Linear Regression

If we have only a single predictor variable, X, then we can drop one
set of subscripts from our equations. The linear relation between X
and Y is

Y = α + βX.

The set of training data samples yield the set of linear equations:

yj = α + βxj + εj , j = 1, . . . ,m.

The sum of the squares of the errors (SSE) for the entire data set is

SSE =
m∑

j=1

ε2j =
m∑

j=1

(yj − α− βxj)2.

The two regression coefficients can be found using the method of least
square, which minimizes the SSE. Differentiating SSE with respect to
α and β separately and setting the resulting equations to zero yield
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two equations

∂(SSE)
∂α

= −2
m∑

j=1

(yj − α− βxj) = 0

∂(SSE)
∂β

= −2
m∑

j=1

(yj − α− βxj)xj = 0.

These two equations are linear in the unknowns α and β, and can be
solved to obtain the solution

α = ȳ − βx̄

β = Sxy/Sxx,

where x̄ and ȳ are the arithmetic mean values for variables X and Y
in the training data set,

Sxy =
m∑

j=1

(xj − x̄)(yj − ȳ)
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Sxx =
m∑

j=1

(xj − x̄)2.

Also of interest is the quantity

Syy =
m∑

j=1

(yj − ȳ)2.

It is important to know the extend to which two variables, such as
x an y, are correlated. The strength and direction of the relationship
can be measured by a correlation coefficient, r, which is defined as

r =
Sxy√
SxxSyy

= β

√
Sxx

Syy
.

The correlation is defined only if Sxx and Syy (which are basically
the standard deviations) are both finite and nonzero. It is a corollary
of the Cauchy-Schwarz inequality that the correlation cannot exceed
1 in absolute value. The correlation is 1 in the case of an increasing
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linear relationship, -1 in the case of a decreasing linear relationship,
and some value in between in all other cases, indicating the degree of
linear dependence between the variables. The closer the coefficient is
to either -1 or 1, the stronger the correlation between the variables.
If the variables are independent then the correlation is 0, but the
converse is not true because the correlation coefficient detects only
linear dependencies between two variables.
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• Example: Straight-line Linear Regression

Years experience (x) Salary (y), in $1000s
3 30
8 57
9 64
13 72
3 36
6 43
11 59
21 90
1 20
16 83

Suppose we are given the follow table of data where x is the num-
ber of years of work experience of a college graduate and y is the
corresponding salary of the graduate. The data is 2-dimensional and
can be easily graphed. The plot suggest a linear relationship between
the two variables X and Y .
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Using straight-line regression, we find that β = 3.5375 and α =
23.2090. Thus the equation of the least squares line is estimated by

y = 23.6 + 3.5x.

The correlation coefficient is found to be 0.9721, which indicates a very
strong positive correlation between the salary of a college graduate
and the number of years of work experience.

Using this above equation, we can now make prediction about the
salary of any college graduate based on the number of years of work
experience. For example, we find that the salary of a college graduate
with, say, 10 years of experience is $58, 583.70.

2.2. Multiple Linear Regression

Multiple linear regression is an extension of straight-line linear re-
gression so as to involve more than one predictor variable. It al-
lows response variable y to be modeled as a linear function of n
predictor variables or attributes, A1, A2, . . . , An, describing a sam-
ple, X = (x1, x2, . . . , xn). Our training data set, T , contains m data
points of the form (X1, y1), (X2, y2), . . . , (Xm, ym), where the Xi are
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the n-dimensional training samples with associated continuous class
labels, yi.

Multiple linear regression problems are commonly solved using the
general method of least squares with the use of statistical software
packages, such as SAS, SPSS, and S-Plus, or more general numerical
computing software such as Matlab.

3. Nonlinear Regression

How can we model data that does not show a linear dependence of
the response variable to the predictor variables? One can generalize
the above to include modeling by polynomial functions. By applying
transformations to the variables, we can convert the nonlinear model
into a multiple linear regression problem that can then be solved by
the method of least squares.

For example, a cubic relationship given by

y = α + β1x + β2x
2 + β3x

3
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can be converted to linear form if we introduce independent variables

x1 = x x2 = x2 x3 = x3

to obtain the linear multiple-regression model

y = α + β1x1 + β2x2 + β3x3.

By suitably transforming the independent variable, or transform-
ing the dependent variable, or both, we can reduce a nonlinear relation
to a linear one where linear regression can then be used. Some useful
transformations can be found in this table.

Function form Transformations Regression form
Exponential:
Y = αeβX Y ∗ = ln Y Regress Y ∗ against X
Power:
Y = αXβ Y ∗ = ln Y , X∗ = ln X Regress Y ∗ against X∗

Reciprocal:
Y = α + β/X X∗ = 1/X Regress Y against X∗

Hyperbolic:
Y = X/(α + βX) Y ∗ = 1/Y , X∗ = 1/X Regress Y ∗ against X∗
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