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ABSTRACT
A fundamental paradigm in P2P is that of a large com-
munity of intermittently-connected nodes that cooperate to
share files. Because nodes are intermittently connected, the
P2P community must replicate and replace files as a function
of their popularity to achieve satisfactory performance. We
develop a suite of distributed, adaptive algorithms for repli-
cating and replacing content in a P2P community. We do
this for structured P2P communities, in which a distributed
hash table (DHT) substrate is available for locating the node
responsible for a key. In particular, we develop the Top-K
MFR replication and replacement algorithm, which is not
only straightforward to layer on top of a DHT substrate,
but also adaptively converges to a nearly-optimal replication
profile. Furthermore, we develop an analytical optimiza-
tion theory for benchmarking the performance of replica-
tion/replacement algorithms, including algorithms that em-
ploy erasure codes.

1. INTRODUCTION
One of the most compelling uses of the Internet today is P2P
file sharing of multimedia content. Popular P2P file sharing
systems, such as KaZaA, support millions of simultaneous
users, and provide sharing of a variety of file types, including
large multimedia files such as MP3s (typically in 3-6 Mbyte
range) and videos (ranging from 5 Mbytes to multiple Giga-
bytes) [1, 2]. Today, P2P file sharing is the dominant traffic
type in the Internet, exceeding that of all other applications,
including the Web.

The file sharing systems KaZaA and Gnutella are often re-
ferred to as “unstructured” P2P systems because (i) the
nodes are not organized into highly-structured overlays, and
(ii) content is (essentially) randomly assigned to nodes. Be-
cause content is randomly assigned to nodes, the unstruc-
tured P2P systems must resort to limited-scope search for

locating content. Unfortunately, a limited-scope query may
not find a node with the desired file even if the file is present
in some node in the P2P system. Furthermore, the unstruc-
tured file sharing systems do not attempt to replicate/replace
content in a manner that is socially advantageous for the
P2P community at large.

Recently, a number of proposals have been put forth for
“structured” P2P systems, including CAN [11], Chord [12],
Pastry [9], and Tapestry [16]. Structured P2P systems use
distributed hash table (DHT) substrates, which organize nodes
into highly-structured overlay networks and which determin-
istically assign keys to nodes. A DHT substrate can serve
as a platform for a variety of P2P applications, including
persistent file storage [3] [4] [5], multicast [6] [7], mobility
management [6], and Web caching [8]. DHT substrates are
also compelling platforms for P2P file sharing of multimedia
content, since they can provide efficient file location proce-
dures.

In this paper we examine DHT-based file-sharing commu-
nities. A P2P file-sharing community is a collection of in-
termittently-connected nodes with each node contributing
storage, content and bandwidth to the rest of the commu-
nity. When a node in the community wants a particular file,
it first attempts to retrieve the file from the other nodes in
the community. If the desired file is not found in the com-
munity, the community retrieves the file from the outside,
possibly caches the file, and forwards a copy to the request-
ing node.

As an example of a P2P file-sharing community, consider a
university campus network. As shown in Figure 1(a), the
peers in a campus are typically interconnected with a high-
speed LAN, and the high-speed LAN is connected to the
global Internet via a lower-speed access link. Currently, the
peers within a campus do not organize themselves as a P2P
community: the peers in the campus independently retrieve
the same popular music and video content from peers out-
side the campus, clogging the access links and wasting peer
storage. The university campus could make more efficient
use of its resources (WAN bandwidth and peer storage) if the
peers were organized in a P2P community. As a P2P com-
munity, the peers in the campus would collectively maintain
a managed number of copies of files, and would attempt to
retrieve files internally before retrieving them from outside
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the campus.

A second example of a P2P file-sharing community is a
content-distribution booster, for example, for the distribu-
tion of video training content in a large corporation. As
shown in Figure 1(b), videos are permanently archived in
a small number of servers, which collectively do not have
enough aggregate server and/or transmission capacity to
serve all the users in the corporation. By organizing all the
corporate nodes into a P2P community, the P2P community
serves as a front-end surrogate for video distribution. Pop-
ular videos would often be downloaded (or streamed) from
other corporate peers, thereby relieving the burden on the
archival servers.

In this paper we address the problem of content management
in P2P file-sharing communities. Our focus is in on the shar-
ing of large audio and video files. We study the problem in
a DHT context, that is, the individual nodes in the commu-
nity are coupled together with a DHT substrate. Through-
out we make the natural assumption that intra-community
file transfers occur at relatively fast rates as compared with
file transfers into the community; this is clearly the case for
campus networks and content-distribution boosters.

The essence of our problem is to adaptively manage content
in a P2P community to minimize the average delay, which
is defined as the time from when a node makes a query for
a file until the node receives the file in its entirety. Be-
cause the file transfer delay is typically orders of magnitude
larger than lookup delays, and because intra-community file
transfers occur at relatively fast rates, our problem is, for all
practical purposes, equivalent to adaptively managing con-
tent to maximize intra-community hit rates. (We discuss
this equivalence in more detail in Section 3.)

There are two important issues in maximizing the intra-
community hit rate.

• Replication: Because nodes connect and disconnect
to the network (or to the “application”), to provide
satisfactory hit rates, content needs to be replicated
across multiple nodes in the community. Naturally,
popular content needs to more aggressively replicated
than unpopular content. At the same time, content
should not be excessively replicated, wasting band-
width and storage resources.1

• File Replacement Policies: Each participating node
has a limited amount of storage that it can offer to the
community. Even with, say, 100 Gbytes of shared stor-
age per node, a node will not be able to store more
than 20-40 DVD videos. When this storage fills at
some node, the node needs to determine which files it
should keep and which it should evict.

The principal contribution of this paper is a series of al-
gorithms for dynamically replicating and replacing files in

1It is problematic when thousands of students on the
same campus download and store the same recently-released
movie [15].

a P2P community. These algorithms make no a priori as-
sumptions about file request probabilities or about nodal up
probabilities. They are therefore appropriate for when file
request probabilities are changing over time and new files
are being introduced in the system daily. The algorithms
are simple, adaptive and fully distributed. They can ride on
top of any of the DHT substrates (e.g., [11, 12, 9, 16]).

We first propose natural and intuitive Least Recently Used
(LRU) Algorithms. Although the LRU algorithms provide
better performance than non-cooperative schemes, their per-
formance remains well below that of a provable upper bound.
We then devise an alternative algorithm, called Top-K Most
Frequently Requested (Top-K MFR), which through simula-
tion analysis is shown to give remarkably good performance
- nearly optimal for all tested scenarios. We also provide an
efficient and accurate procedure for analytically evaluating
the steady-state performance of the Top-K MFR algorithm.
This analytical procedure further confirms the near optimal-
ity of the Top-K MFR algorithm.

A second important contribution of this paper is an analyti-
cal optimization theory for replication in P2P communities.
For the analytical theory, we assume that file popularities
and nodal up probabilities are known a priori. We develop
the theory for complete-file replication as well as for the
case when files are segmented and erasure codes are used to
provide redundancy. For the general case with erasures, we
show that a simple, separable concave optimization problem
provides an upper bound on the performance of all adap-
tive schemes. For complete file replication, we show that an
explicit logarithmic assignment rule is optimal. The opti-
mization theory provides significant insight into managing
P2P content, and also allows us to benchmark the adaptive
replication algorithms.

This paper is organized as follows. Section 2 reviews re-
lated work. In Section 3 we propose and analyze distributed
content management algorithms, including Top-K LRU and
Top-K MFR. In Section 4, we develop the analytical theory
for optimal replication in P2P, including a theory for repli-
cation with erasures. In Section 5 we conclude and discuss
future directions.

2. RELATED WORK
A P2P community can also be viewed as a distributed P2P
cache for caching large multimedia files. Squirrel [8] is a re-
cent proposal and implementation of a distributed, server-
less, P2P Web caching system. Squirrel, which is built on
top of the Pastry [9] DHT substrate, has been carefully de-
signed to serve as an alternative for a traditional Web proxy
cache. While such detailed protocol design and implemen-
tation issues are clearly important, the work [8] has not fo-
cused on the fundamental issues of replication and file re-
placement in a P2P community. Furthermore, the focus of
[8] is on Web objects, whereas the focus of this paper is on
large multimedia files, which account for the majority of the
traffic in today’s file sharing systems.

FarSite [21] (see also [22] [23]) is a P2P file system with the
strong persistence and availability of a traditional file sys-
tem. The FarSite filesystem uses the same number of repli-
cas – three – for each file. In contrast with a file system, the
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Figure 1: Different types of P2P communities

goal of a P2P community is not to provide strong file per-
sistence, but instead maximal content availability. Thus, in
a P2P community, the number of replicas of an file depends
on the popularity of the file.

Lv et al [13] and Cohen and Shenker [14] studied optimal
replication in an unstructured peer-to-peer network in or-
der to reduce random search times. Our work differs in
that we are replicating content in structured, DHT-based
networks, and we take intermittent connectivity explicitly
into account. Furthermore, we replicate to decrease average
file transfer time rather than to decrease the random search
time in an unstructured P2P system.

There has also been work comparing replication and era-
sure coding in distributed storage infrastructures [10]. The
authors also discuss the drawbacks of using erasures. The
paper focuses on persistent storage, and does not consider
adaptive replication and replacement of replicas or erasures.

3. ADAPTIVE ALGORITHMS FOR CON-
TENT MANAGEMENT IN P2P COMMU-
NITIES

As discussed in the Introduction, a P2P community consists
of a large community of intermittently-connected nodes that
cooperate to share content. The nodes in the community
could be workstations, desktop PCs, portable PCs, etc.2

2Low-bandwidth, low-storage devices would not likely cache
and serve files in the community (although they may be
permitted to download files from the community).

Each participating node allocates a fraction of its storage
to the P2P community. We refer to this allocation as the
node’s shared storage. (The nodes also have private storage,
which is not accessible by the other nodes in the community.)
We suppose that the files in a node’s shared storage are not
lost when a node disconnects; when a peer comes back up,
its files again become available. (This is generally the case
in P2P file-swapping systems such as KaZaA and Gnutella.)

As mentioned in the Introduction, a natural performance
measure is average delay, where delay is defined from the
moment a request is made until the entire file is downloaded.
Delay has two components: the time to locate a copy of
the file, and the time to download the file. Because our
focus is on large files (e.g., music and video), the delay is
dominated by the downloading component. Because intra-
community file transfers occur at relatively fast rates, the
downloading delay is directly correlated to the probability
of finding the file within the community, that is, the intra-
community hit probability. Henceforth, our optimization
criterion is to maximize the hit probability3.

3.1 DHT Substrate
Each node has a persistent identifier, which is assigned when
the node initially subscribes to the application. (Because
nodes typically change their IP addresses each time they
come up, the IP address cannot be used as the persistent

3In some circumstances, it can be argued that the byte hit
probability is more appropriate than the file hit probability.
The algorithms and theory developed in this paper are easily
modified for byte hit performance.
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identifier.)

As shown in Figure 2, our algorithms require that each par-
ticipating node has access to the API of a DHT substrate.
The substrate has a function call that takes as input a file
identifier j and determines an ordered list of the up nodes.
The substrate then returns, for a given value of K, the first
K nodes on the list, i1, i2, . . . , iK . The node i1 is said to
be the current first place winner for file j; the node i2 is
said to be the current second-place winner for file j, and
so on. There are a number of substrates today that provide
this functionality for first-place winners, including CAN [11]
Chord [12], Pastry [9] and Tapestry [16]. These substrates
are easily extended to provide the top K winners.

3.2 Top-K LRU Algorithm
We now begin to address the following fundamental problem
in structured P2P systems: How can we adaptively add and
remove replicas, in a distributed manner and as a function
of evolving demand, to maximize the hit probability?

Our approach is to couple the file location provided by the
DHT substrate with on-the-fly replication and replacement.
The basic idea is as follows. When there is a request for a
file j, the community uses the DHT substrate to search for
a replica in the community; if the community does not find
a replica in an up node, a new replica of j is obtained and
stored in the current first-place node for j and a replica of
another file is (possibly) evicted from the node. This simple
idea is at the core of our adaptive algorithms. However, we
shall see that a naive application of the idea gives unsat-
isfactory performance, but that a collection of subtle, yet
critical, refinements provide near-optimal performance.

We begin with a simple, intuitive adaptive algorithm. Sup-
pose X is a node that wants file j. X will obtain j as follows:

Basic LRU Algorithm

1. X uses the substrate to determine i1, the current first-
place winner for j.

2. X asks i1 for j. If i1 doesn’t have j (a “miss” event),
i1 retrieves j from outside the community and puts a
copy in its shared storage. If i1 needs to evict a file to
make room for j, i1 uses the LRU replacement policy.

3. i1 sends j to X (either for streaming or for download-
ing into X’s private storage). Note that X does not
put j in its shared storage unless X = i1.

One obvious problem of the Basic LRU Algorithm is that
a request can be a “miss” even when the file is cached in
some up node in the community. Indeed, suppose file j is
cached at the first-place winner and then, just prior to a
request for file j, a new node comes up which becomes the
new first-place winner for j. Then the Basic LRU Algorithm
will retrieve file j from the outside even though it is cached
in the community. To mitigate this problem, we modify the
Basic LRU Algorithm as follows. In Step 2, when i1 doesn’t
have j, i1 determines i2, . . . , iK and pings each of these K−1

nodes to see if any of them have j. If so, i1 retrieves j from
of them and puts a copy in its shared storage. Otherwise, as
before, i1 retrieves j from outside the community. We refer
to this modified algorithm as the Top-K LRU Algorithm.

Observe that the Top-K LRU Algorithm replicates content
without any a priori knowledge of file request patterns or
nodal up probabilities. It is also fully distributed. Although
it is still possible that there will be a miss when the desired
file is in some up node in the community, we will show that
if K is appropriately chosen, the probability of such a miss
is negligibly small.

To determine the hit performance of our adaptive algorithms,
we have run simulation experiments with 100 nodes and
10,000 files. Studies in caching and P2P have consistently
confirmed that request probabilities follow a Zipf distribu-
tion [17, 18]. Our simulations also use a Zipf distribution
with parameters .8 and 1.2 [18].

In the simulation experiments reported here, all file sizes are
of the same size. (We also did extensive experiments with
heterogeneous file sizes and obtained similar results.) Be-
cause all files are of the same size, the byte hit probability is
equal to the hit probability. In the simulation experiments
reported here, each node contributes the same amount of
shared storage to the community. (We also did extensive
experiments with heterogeneous storage, and obtained sim-
ilar results.) Our experiments run from 5 files per node to
30 files per node.

For the case of homogeneous up probabilities, we will de-
rive the theoretical optimal policy and corresponding upper
bound (over the set of all replication/replacement policies)
in Section 4. Because such a bound is available, we can use
it to benchmark adaptive algorithms when all nodes have
the same up probability. All of the experimental results we
report here use homogeneous up probabilities for the nodes.
We have considered two up probabilities: .2 and .9. We
have also performed testing with heterogeneous up proba-
bilities (that is, different nodes having different up proba-
bilities), and have found that our algorithms have similar
performance behavior.

Figure 3 shows four graphs, one for each of the combina-
tions of Zipf parameter and up probabilities. Each graph
plots hit probabilities as a function of node storage. The
top curve in each of these figures is an upper bound ob-
tained from the techniques in Section 4. Each figure has a
curve for K = 1 (Basic LRU Algorithm) and K = 5. The
bottom curve is the hit probability for when the nodes do
not cooperate. For the non-cooperative policy, when a node
requests a file, it first checks its local storage to see if it has
a cached copy; if not, the node retrieves the file from outside
the community. For the non-cooperative policy, each node
again uses LRU cache replacement. (Its local storage is set
to the value of the shared storage in the corresponding coop-
erative algorithms.) The figure also includes curves for the
MFR algorithm, which will be discussed shortly. We make
the following observations:

• As we would intuitively expect, the hit probability in-
creases if we increase the node storage capacity, Zipf
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parameter, or the nodal up probability.

• The adaptive algorithm with K = 1 performs signifi-
cantly better than the non-cooperative algorithm, but
significantly worse than the theoretical optimal.

• Using a K value greater than 1 improves the hit proba-
bility, especially when nodes are frequently down. Fur-
ther increasing K beyond K = 5 gives insignificant im-
provement. Figure 4 shows the fraction of misses for
which the file was indeed available in some up node for
the case Zipf parameter = 1.2 and p = .2.

Examining the number of replicas for each file provides im-
portant insight. Figure 5 shows, as a function of file popular-
ity from most popular to least popular, the number of repli-
cas per file for the theoretical optimal and for the adaptive
LRU algorithm with K = 1. For the adaptive algorithm, the
number of replicas per file is changing over time; the graphs
therefore report the average values. The theoretical optimal
number of replicas per file is obtained with the techniques
in Section 4. Again, the figure presents four graphs, one for
each of the combinations. The difference in how the theo-
retical optimal and the adaptive algorithm replicate files is
striking. The optimal scheme replicates the more popular
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files much more aggressively than does the adaptive algo-
rithm. Furthermore, the optimal scheme doesn’t store the
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Figure 3: Hit probability as function of node storage capacity

less popular files, whereas the adaptive algorithm provides
temporary caching to the less popular files.

3.3 Top-K Most Frequently Requested Algo-
rithm

The Top-K LRU algorithm is simple and intuitive, but its
performance is significantly below the theoretical optimal.
We now consider how we can do better. To this end, we
make the following two observations:

• LRU lets unpopular files linger in nodes. When an
unpopular file is requested, it gets stored in one of the
nodes and remains there until it is evicted with LRU.
Intuitively, if we do not store the less popular files, the
popular files will grab the vacated space and there will
be more replicas of the popular files.

• Searching more than one node (that is, the top-K pro-

cedure) is needed to find files in the aggregate storage.

Based on these observations, we will now devise a new adap-
tive algorithm that has near optimal performance. To this
end, we introduce the Most Frequently Requested (MFR)
retrieval and replacement policy:

MFR retrieval and replacement policy

• Each node i maintains a table for all files for which it
has received a request. For a file j in the table, the
node maintains an estimate of λj(i), the local request
rate for the file. In the simplest form, λj(i) is the
number of requests node i has seen for file j divided by
the amount of time node i has been up. In practice, we
would likely weigh recent requests more heavily in the
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Figure 5: Number of replicas per file with 10 files of per-node storage capacity and LRU replacement policy

online calculation of λj(i). Also, note that ideally the
table would contain an entry for all objects for which
i has received a request; in practice the size of this
table could be easily limited to, say, a few thousand
most frequently requested objects without any impact
on performance (recall that because of the large size
of objects we are considering, a node would typically
only be able to store a very small number of objects).

• Each node i stores the files with the highest λj(i) val-
ues, packing in as many files as possible. As we show
in Section 4, objects with different sizes should be or-
dered according to λj(i)/bj , where bj is the size of
object j.

Thus when node i receives a request (from any other node)
for file j, it updates λj(i). It then checks to see if it currently
has j in its storage. If i doesn’t have j and MFR says it

should4, then i retrieves j from the outside, puts j in its
storage, and possibly evicts one or more files from its storage
according to MFR5.

Now that we have defined the retrieval and replacement pol-
icy, we need to define the ping dynamics. We want the ping
dynamics to influence the rates so that the numbers of repli-
cas across all nodes become nearly optimal. One approach
might be for X (the node that wants the file) to ping the
top-K winners in parallel, and then retrieve the file from
any node that has the file. Each of the pings could be con-

4If node i has storage for n objects, then i would store the
n objects with the highest λj(i) in its shared storage.
5There is a subtlety in how i gets j. The node i could simply
retrieve i from the outside. The node i could also ping the
remaining internal winners for the file, which only improves
marginally the hit probability. (But in this latter approach,
it is important not to count the pings as requests.)
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sidered a request, and the nodes could update their request
rates and manage their storage with MFR accordingly. But
it turns out that this approach doesn’t give better perfor-
mance than Top-K LRU.

It turns out that the correct approach is for X to sequentially
request j from the top-K winners, and stop the sequential
requests once j is found. Sequential requests influence the
locally-calculated request rates in a manner such that the
global replication is nearly optimal. In particular the value
of λj(i) at any node i will be reduced (or “thinned”) by hits
at “upstream” higher-placed nodes for j. We now summa-
rize the algorithm. Suppose X wants file j. Initialize k = 1.

Top-K MFR Algorithm

While k ≤ K and X has not obtained j:

1. X uses substrate to determine i, the kth place winner
for j.

2. X requests j from i.

• Node i updates λj(i).

• If node i already has j, node i sends j to X; stop.

• If node i does not have j but it should (accord-
ing to MFR), i gets j, stores j and evicts files if
necessary. Node i sends j to X.

3. k = k + 1

If after K iterations, X still does not have j, X gets j from
the outside directly (but does not put j in its shared stor-
age). Note that asking the top-K winners sequentially will
increase the delay of finding the object (or determining that
it is not available in the community). However, since the ob-
jects are large, the download delay dominates the total delay
experienced by the user and the delay to locate the object is
only a minor fraction of the total delay.. In addition, down-
loads within the community happen at a much faster rate
than from outside the community; hence, it pays off to ask
the K winners within the community, even sequentially. In
practice it is likely that the delay caused by contacting K
peers in the community would be negligible and completely
unnoticeable by the user.

Figure 6 shows, as a function of file popularity, the number
of replicas per file for the theoretical optimal and for Top-
K MFR Algorithm with K = 5. We see that, in contrast
with LRU, the number of replicas given by the MFR algo-
rithm is very close to the optimal. In fact for most files,
the number of replicas given by the Top-5 MFR algorithm
is equal to the optimal; a small fraction of files are off by
one replica from the optimal. Figure 3 compares the hit
rate of MFR (with K = 1 and K = 5) with the adap-
tive LRU algorithms and with the optimal hit rate. We see
from Figure 3 that the MFR algorithms give hit rates that
are very close to optimal over the entire parameter space
considered. Again, we have observed similar results with
heterogeneous file sizes, nodal storage capacities, and nodal

up probabilities, and with smaller and larger Zipf parame-
ters. The small and insignificant differences between MFR
and optimal replication/replacement (when they occur) are
due to imperfect load-balancing in the DHT substrate and
to sub-optimal packing of non-constant-size files into the
nodes’ storage. In conclusion, the Top-K MFR algorithm is
a fully-distributed, adaptive content management algorithm
that is, for all practical purposes, optimal for DHT-based file
sharing systems.

3.4 Performance Analysis of MFR
Given that the MFR algorithms possess many attractive
properties, it is desirable to have available a performance
evaluation technique for MFR that is more efficient than
discrete-event simulation. We now present such a technique,
which is not only accurate and efficient, but also sheds in-
sight into the subtleties of the MFR algorithm.

To describe the performance evaluation technique, we intro-
duce some additional notation. Let I denote the number of
nodes. For a given node i, let pi denote its up probability.
Denote by Si the amount of shared storage (in bytes) in the
ith node. Let J denote the number of distinct files, and let
bj denote the size (in bytes) of the jth file. For this perfor-
mance analysis, we assume that the request probabilities for
the J files are known a priori. Specifically, we suppose that
the request probability for each file j is a known value, qj ,
with q1 + q2 + · · · + qJ = 1.

We now describe the analytical procedure for calculating
the steady-state replica profile and hit probability for Top-
K MFR for the case K = I . Although we only analyze the
case K = I , the resulting replica profile and hit probabilities
serve as excellent approximations for when K is small.

The procedure sequentially places copies of files into the
nodes. Let Ti denote the remaining unallocated storage in
node i; let xij be equal to 1 if a copy of file j has been placed
in node i and equal to 0 otherwise. After placing a copy of
file j in node i, Ti is reduced and xij is set to 1.

The procedure first initializes γj = qj/bj for all j = 1, . . . , J
and Ti = Si for all i = 1, . . . , I . It also initializes xij = 0
for all i = 1, . . . , I , j = 1, . . . , J . At each iteration, the
procedure chooses the file with the highest γj value, places a
copy of that file in a node, and then reduces γj appropriately.
Specifically,

1. Find the file j that has the largest value of γj .

2. Sequentially examine the winning nodes for j until a
node is found such that Ti ≥ bj and xij = 0.

• Set xij = 1

• Set γj = γj(1 − pi)

• Set Ti = Ti − bj

If there is no node such that Ti ≥ bi and xij = 0, then
remove file j from further consideration.

3. If all files have not been removed from consideration,
return to Step 1. Otherwise, stop.
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(a) Zipf parameter .8, from left to right node up probabilities .2 and .9.
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(b) Zipf parameter 1.2, from left to right node up probabilities .2 and .9.

Figure 6: Number of replicas per file with 10 files of per-node storage capacity and MFR replacement policy
with K = 5

The replication profile provided by this procedure is typi-
cally very close to the steady-state profile obtained by the
Top-I MFR algorithm. The two profiles may differ slightly
due to how files of different sizes are replaced and packed in
the nodes, and due to ties in Step 1. However, under the
conditions of the following theorem it can be shown that
the two profiles are the same. (The proof of the theorem
can be found in an extended version of the paper.) Let
x̂ij , i = 1, . . . , I , j = 1, . . . , J be the final xij values from
the above procedure. Let xij(t) be equal to one if at time
t there is a copy of file j in node i when the Top-I MFR
algorithm is used.

Theorem 1: Suppose all files are the same size. Further
suppose that there are never any ties in Step 1 of the pro-
cedure. Then xij(t) almost surely converges to x̂ij for all
i = 1, . . . , I and j = 1, . . . , J .

An interpretation of the Theorem 1 is as follows. Note that
γj is proportional to the request rate to the outside for file
j. Whenever a copy of file j is put in node i, the external
request rate for file j is 0 when node i is up and is not
reduced when node i is down; thus the expected external
request rate is reduced to γj(1 − pi). Since Top-K MFR
converges to replica profile of the procedure (Theorem 1),
the adaptive algorithm has the effect of giving priority to
files that have the highest thinned external request rates.

We used this procedure and Theorem 1 to evaluate the per-
formance of the Top-I MFR algorithm. Specifically, we ran
the procedure for 30 test cases, with the different cases ob-
tained by different combinations of the nodal up probability,
Zipf parameter, and nodal storage capacity. Each case had
100 nodes. For the same cases, we obtained the theoretical
optimal solution (see Section 4). For all of the cases, the
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Table 1: Request probabilities and winners
file Req. prob. 1st place winner
1 5/13 1
2 3/13 2
3 3/13 2
4 2/13 1

conditions of Theorem 1 were satisfied; thus, the procedure
provides the replication profile for Top-I MFR algorithm in
steady state. We found that in 28 of the 30 cases the MFR
algorithm (with K = I) converges the optimal replication
profile! In the two cases without convergence, the number
of replicas were the same for all but two files, with one more
replica for one of the files and one less for the other. This
experiment further confirms that the MFR algorithms are
near optimal.

We now provide a simple example for which the MFR-I
algorithm does not produce the optimal replication profile.
This example gives insight into why MFR-I is not always
optimal. This example has I = 2 nodes, each capable of
storing two files, each having up probability 0.5. It has four
file types, with request probabilities and first-place winners
shown in Table 1. It is easily seen that the Top-2 MFR
algorithm puts one copy of file 1 and one copy of file 4 in
node 1, and one copy of file 2 and one copy of file 3 in node
two. However, the optimal solution puts one copy of file 1
and one copy of file 3 in the first node, and one copy of file
1 and one copy of file 2 in the second node. The problem
comes from the fact that MFR first assigns files 1, 2 and
3, thereby filling node 2. For the next assignment, file 1 is
more desirable than file 4; however, file 1 cannot be assigned
to node 1, as there is already a copy of file 1 there.

3.5 Hot Spots
Up until this point our focus has been on managing content
to maximize the probability of having a hit in the commu-
nity. However, consider the case when a very popular object
j has a first-place winner i that is almost always up. In this
case, the adaptive algorithms will only create one copy of
object j, which will be permanently stored on peer i. If the
demand for this object is very high, then peer i will become
overloaded with file transfers. In this section we sketch ap-
proaches to solving the hot-spot problem.

One approach to this problem is to segment all files (or just
popular files) into multiple fragments, and give each frag-
ment a unique name. Each fragment is then treated as a
separate file in the Top-K MFR algorithm; thus the file-
transfer load imposed by a popular object becomes spread
over many nodes. One drawback to this approach is that,
with multiple fragments per file, a hit requires having a hit
for each of the individual fragments. A further refinement of
the approach is to use erasures, that is, to create R erasures
for the popular files in a manner such that the original file
can be reconstructed from any M of the R erasures. In the
following section we provide an upper bound on the perfor-
mance of adaptive schemes that use erasures.

Another approach to this problem is to leave the files in-

tact (no fragmentation) and allow nodes overloaded with
file transfers to reject requests even when they have a copy
of the requested file. Thus, if the first-place node for a par-
ticular file is overloaded, it sends a negative message back
to requesting node. The requesting node then requests the
file from the second-place winner, and so forth. We refer
to this approach as the overflow approach. Adaptive algo-
rithms using erasures and using overflows is the subject of
a subsequent paper.

Of course, both the fragmentation and the overflow ap-
proaches to hot spot problems only help to relieve file-transfer
loads; they do not reduce the number of requests to the top
winners of a popular file. We are also currently investigat-
ing algorithms for which the request load for a popular file
is spread over multiple nodes.

4. OPTIMIZATION THEORY
We now complement our suite of adaptive algorithms with
an analytical theory for optimal replication in P2P commu-
nities. The theory applies to both open communities (as
studied in the previous sections) and closed communities,
for which it is not possible to access files from outside the
community. We also derive the theory in a more general
context for which each file (is possibly) erasure coded. In
a subsequent paper, we will study adaptive algorithms for
erasure encoded files in open and closed communities. Here
our focus is on obtaining upper bounds.

For this analytical theory, we assume that file popularities
and nodal up probabilities are known a priori. As in Sec-
tion 3.4, let I denote the number of nodes, and let pi and
Si denote the up probability and shared storage for node i.
In this section we suppose that nodes go up and down in-
dependently. Let J denote the number of distinct files, and
let bj and qj denote the size and request probability of the
jth file.

4.1 No Fragmentation
We first develop the theory for the case when files are not
fragmented (the case considered in the previous sections).
Let xij be a zero-one variable which is equal to one if node
i contains a replica of file j and is zero otherwise. It is
straightforward to show that the hit probability is given by

Phit = 1 −
J∑

j=1

qj

I∏
i=1

(1 − pi)
xij . (1)

The assignments must satisfy the constraints

J∑
j=1

bjxij ≤ Si, i = 1, . . . , I (2)

The solution of the integer programming problem of max-
imizing (1) subject to (2) provides an upper bound on the
hit probability for all content management algorithms. The
integer program can thus be used to benchmark adaptive al-
gorithms. However, this optimization problem can be shown
to be NP-complete by reducing it to the Zero-One Integer
Programming problem [19].

We now consider a special case of this problem, namely,
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when each node is up with the same probability pi = p. Let
nj denote the number of replicas for file j. For the case
of homogeneous up probabilities, the problem is to choose
non-negative integers n1, . . . , nJ such that the following is
maximized

1 −
J∑

j=1

qj(1 − p)nj (3)

subject to

J∑
j=1

bjnj ≤ S (4)

where S = S1+· · ·+SI . Note that, because storage has been
aggregated into one constraint, the optimal value for (3-4)
is actually an upper bound on the optimal hit probability
(for homogeneous values of pi); however, this upper bound
turns out to be very tight, and can actually shown to be
exact for important special cases. (For example, when all
files are the same size.) This optimization problem can be
solved efficiently by dynamic programming. Indeed, let fj(s)
be the minimum miss probability when there are s bytes
of aggregate storage and files j, . . . , J to replicate. Then
standard dynamic programming arguments give

fj(s) = min
n:bjn≤s

[fj+1(s − nbj) + qj(1 − p)n]

The optimal replica profile n1, . . . , nJ solves f1(S). This
provides the “theoretical optimal” used in the Section 3 to
benchmark our adaptive algorithms.

We note in passing that the same methodology can be used
to obtain an upper bound when there are two heterogeneous
up probabilities, one for each of the two sets in a two-set
partition of the nodes. (For example, 20% of the nodes up
with probability .9 and 80% of the nodes up with proba-
bility .2.) In this case, we can derive a two-dimensional
dynamic programming equation. The computational com-
plexity increases, but the computations remain tractable for
large values of J .

4.2 Upper Bound With and Without Erasures
The number of copies of any of object in the P2P community
is an integer at any given time. By removing this integrality
restriction, we can develop a methodology for efficiently de-
termining an upper bound on the performance of adaptive
management algorithms in large P2P systems. We shall do
this for the case of erasures; the case without erasures will
be treated as a special case.

We now suppose that each file j is made up of Rj erasures,
and that any Mj of the Rj erasures are needed to reconstruct
the file. The size of each erasure is bj/Mj . Throughout this
analysis we assume homogenous up probabilities, that is,
pi = p for all nodes. We also make the natural restriction
that the replication algorithms that we are bounding are
such that no two erasures from the same file are stored on
the same node. Let cj = Mj/(bjRj) and

fj(z) = qj

Rj∑
m=Mj

(
Rj

m

)
[1 − (1 − p)cjz]m[(1 − p)cjz]Rj−m

The main result of this subsection is the following:

Theorem 2: The maximum value of the following optimiza-
tion problem provides an upper bound on the hit probability
for a P2P file-sharing community with erasures.

Maximize

J∑
j=1

fj(zj) (5)

subject to

J∑
j=1

zj = S (6)

zj ≥ 0, j = 1, . . . , J (7)

The optimization problem in Theorem 2 is easy to solve nu-
merically, even for large values of J and Rj , j = 1, . . . , J .
Specifically, it is straightforward to show that fj(z) is an in-
creasing concave function of z, so that optimization problem
is a separable concave allocation problem. Let (z∗

1 , . . . , z∗
J )

be the optimal solution for this concave optimization prob-
lem. From Kuhn-Tucker theory, there exists an α such that

f ′
j(z

∗
j ) = α for all j such that z∗

j > 0 (8)

The standard procedure to solve this type of problem is to
first pick an α > 0, solve f ′

j(zj) = α for all j; for those values
of j such that zj ≥ 0, we sum the zj ’s and check if the sum
is above or below S. If the sum is above S (below S) we
decrease α (increase α) and repeat the procedure. Using a
binary search to adjust α, we iterate until the sum of the
positive zj ’s is within ε of S. For the positive zj ’s we set
z∗

j = zj ; for the remaining zj ’s we set z∗
j = 0.

Theorem 2 provides a powerful means to benchmark the
performance of adaptive algorithms with and without era-
sures. We provide an example at the end of this section that
shows that the upper bound is quite tight when entire files
are replicated.

Proof of Theorem 2: We refer to the rth erasure of file
j as erasure jr, r = 1, . . . , Rj . For a fixed assignment of
erasure replicas to nodes, let njr be the number of erasures
jr stored in the community of nodes. Clearly

J∑
j=1

Rj∑
r=1

bj

Mj
njr ≤ S (9)

Using the same fixed assignment, let Φjr be the 0-1 random
variable which is 1 if any of the njr erasures jr is in some
up node. Clearly,

P (Φjr = 1) = 1 − (1 − p)njr := pjr (10)

Let Pj(hit) = P (hit|request for j). Because there is a hit
for a request for file j if any Mj of the Rj erasures for file j
are available, we have

Pj(hit) =

Rj∑
m=Mj

P (
∑

r

Φjr = m). (11)
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Let Rj(m) = {A : A ⊆ {1, . . . , Rj} and |A| = m}. We also
have

P (
∑

r

Φjr = m) =
∑

A∈Rj(m)

P (∩r∈AΦr ∩r∈Ac Φc
r)

=
∑

A∈Rj(m)

(
∏
r∈A

pjr)(
∏

r∈Ac

(1 − pjr))

(12)

where the last inequality follows from the fact that no two
erasures from the same file are stored on the same node.
Let Tj = {A : A ⊆ {1, . . . , Rj} and |A| ≥ Mj}. Combining
(10-12) gives

Pj(hit) =
∑

A∈Tj

∏
r∈A

[1 − (1 − p)njr ]
∏

r∈Ac

[(1 − p)njr ]

:= h(nj1, nj2, . . . , njRj ) (13)

Now consider a reliability system that consists of Rj sub-
systems, with the rth such subsystem consisting of njr par-
allel components, with every component being operational
with probability p. Suppose that the system is operational
if any Mj out of Rj subsystems are operational. It is easy
to see that the probability that the system is operational
is given by h(nj1, nj2, . . . , njRj ). Combining this observa-
tion with Theorem 2.2 of Boland et al [24] implies that
h(nj1, nj2, . . . , njRj ) is Shur concave. This in turn implies
that this h(nj1, nj2, . . . , njRj ) ≤ h(xj , xj , . . . , xj), where xj =

(1/Rj)/
∑Rj

r=1 njr . Thus∑
A∈Tj

∏
r∈A

[1 − (1 − p)njr ]
∏

r∈Ac

[(1 − p)njr ] ≤

∑
A∈Tj

[1 − (1 − p)xj ]|A|[(1 − p)xj ]|A
c| (14)

Combining (13) and (14) gives

Pj(hit) ≤
Rj∑

m=Mj

(
Rj

m

)
[1 − (1 − p)xj ]m[(1 − p)xj ]Rj−m

(15)
Now define zj = xj/cj . From (15) and the definition of fj(z)
we have

P (hit) ≤
J∑

j=1

fj(zj) (16)

and from (9)

J∑
j=1

zj ≤ S. (17)

The result follows directly from (16-17). �

4.3 Logarithmic Replication Rule
Theorem 2 of the previous section can be used to benchmark
adaptive algorithms that use erasures. Moreover, by special-
izing the theorem to adaptive algorithms without erasures
(as studied in Section 3), we can obtain a closed-form expres-
sion for the optimal hit probability, which sheds additional
insight in on how files should be optimally replicated.

First we note that for the case of no erasures, we have Rj =
Mj = 1, so that fj(z) simply becomes fj(z) = qj(1 − p)z/bj

for all j = 1, . . . , J . Let (z∗
1 , z∗

2 , . . . , z∗
J) be the optimal solu-

tion to the optimization problem in Theorem 2. This opti-
mal solution can be obtained explicitly as follows. Differen-
tiate fj(z) and solve for z∗

j such that fj(z
∗
j )α, and use (6)

to solve for α, and taking special care that z∗
j ≥ 0 is not

violated, we obtain the following solution. Now reorder the
files so that they have decreasing valuses of qj/bj . There is
an L such that z∗

j = 0 if and only if j > L. (We will indicate
shortly how L is determined.) Define

BL =

L∑
j=1

bj

which is the amount of storage required by the first L files.
Finally, let n∗

j = z∗
j /bj , which has the interpretation of the

optimal number of replicas of file j in the continuous relax-
ation of the problem. After carrying out this exercise, we
obtain:

n∗
j =

S

BL
+

∑L
l=1 bl ln(ql/bl)

BL ln(1 − p)
+

ln(qj/bj)

ln(1/(1 − p)
(18)

It remains to specify how L is determined. This is done by
finding the largest L such that n∗

L > 0 using (18). This can
be done by a simple (linear or binary) search.

The n∗
j given by (18) is non-integer and represents the ap-

proximate number of replicas for file j. When these values
are used in the expression for P (hit), we obtain a closed-
form approximation for the hit probability:

Papprox(hit) = 1 − aS/BL

L∑
j=1

qj

L∏
l=1

(
ql/bl

qj/bj
)bl/BL (19)

where a = 1 − p.

The expressions (18-19) provide significant insight into the
nature of the optimal replica profile:

• The ratio qj/bj plays a key role in influencing the num-
ber of replicas that are assigned to object j. Objects
with small values of qj/bj (specifically, for objects with
j > L) are not stored in any of the peers in the optimal
solution.

• We call the replication of objects given by (18) the log-
arithmic replication rule since n∗

j is equal to a constant
plus a term proportional to ln(qj/bj). It is interesting
to note a parallel of the logarithmic replication rule
with the square root assignment rule that was derived
by Kleinrock for the link capacity assignment problem
in 1964 [20]!

• The expression (19) is actually upper bound on the
true optimal hit rate, since it is the optimal over con-
tinuous variables rather than integer variables.

We now provide some numerical results. Table 2 shows the
difference between (19) and (3) as a percentage of the upper
bound given by (19). We show the results for three different
node up probabilities and two different values of the Zipf
parameter. In all cases, we had 100 nodes and each node
had storage capacity for 15 objects (all objects assumed to
be the same size). We observed similar behavior for other
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Table 2: Average difference between continuous so-
lution and dynamic programming solution

Up prob. Zipf 1.2 Zipf 0.8
0.2 0.02% 0.08%
0.5 0.1% 0.7%
0.9 0.9% 5.8%

storage capacities not reported here. The results in Table 2
show that in most cases the upper bound given by (19) is
very tight; typically the difference is less than 1%. However,
as the up probability goes up and the Zipf parameter goes
down, the difference increases somewhat. This behavior is
understood by comparing the optimal number of replicas
obtained from the logarithmic replication rule with that ob-
tained from dynamic programming; see Figure 7.

We can clearly see the logarithmic replication rule in Fig-
ure 7. The replicas given by (18) decrease logarithmically
as the file popularity decreases. The replicas given by the
dynamic programming are constrained to integer values and
decrease in steps, closely following the continuous optimal
in most cases. In cases where the most popular objects need
only a few copies, such as the case shown in 7(b), the opti-
mal number of integer replicas is coarse. This explains the
large difference in hit-rates shown in Table 2.

5. CONCLUSIONS AND FUTURE WORK
P2P file sharing (e.g., KaZaA and Gnutella) is an enor-
mously popular Internet application and accounts for the
majority of today’s Internet traffic. Although today the
popular file sharing applications are “unstructured” designs,
structured, DHT-designs will potentially improve search and
download performance.

One of the features of structured, DHT-based P2P file shar-
ing is that the application has significant control on where
and how many replicas are generated. The contribution of
this paper is twofold.

• First, for DHT-based file sharing systems, we have
proposed a suite of adaptive algorithms for replicating
and replacing files as a function of evolving file pop-
ularity. In particular, we proposed the Top-K MFR
algorithm, which is a fully-distributed, adaptive, near-
optimal content management algorithm for DHT-based
file sharing systems.

• Second, we have introduced an optimization method-
ology for benchmarking the performance of adaptive
management algorithms. The methodology directly
applies to networks whose nodes have homogeneous
up probabilities, and can be extended to heterogeneous
environments (e.g., two or three different sets of nodes,
each with their own up probability). The methodology
applies to designs that use erasures; it also applies to
closed P2P communities as well as open communities.

The algorithms and theory developed in this paper set the
stage for several other important problems. We are cur-
rently developing new adaptive algorithms for closed P2P

communities, P2P communities that use erasures, and P2P
communities that use request overflow to abate hot spot
problems.
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Figure 7: Values of nj and n∗
j for Zipf .8 and 5 objects of per-node storage

[15] Chronicle of Higher Education, “Napster was
nothing compared with this year’s bandwidth
problems,” Sept. 28, 2001.

[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph,
“Tapestry: An infrastructure for fault-tolerant
wide-area location and routing,” Tech. Rep.
UCB//CSD-01-1141, Apr. 2000.

[17] L. Breslau, P. Cao, G. Phillips, and S. Shenker,
“Web caching and Zipf-like distributions: Evidence
and implications,” in INFOCOM 1999.

[18] K. Sripanidkulchai, “The popularity of Gnutella
queries and its implications on scalability,” Mar.
2001, Unpublished.

[19] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of
NP-Completeness, Freeman, 1979.

[20] L. Kleinrock, Queueing Systems. Volume II:
Computer Applications, John Wiley & Sons, New
York, 1976.

[21] A. Adya et al. “FARSITE: Federated, Available,
and Reliable Storage for an Incompletely Trusted
Environment,” in OSDI’02, December 2002

[22] J.R Douceur, A. Adya, W.J. Bolosky, D. Simon,
M. Theimer, “Reclaiming Space from Duplicate
Files in a Serverless Distributed File System,” in
ICDCS, 2002

[23] J.R. Douceur, R.P. Wattenhofer, “Optimizing File
Availability in a Secure Serverless Distributed File
System,” Proceedings of 20th IEEE SRDS, 2001

[24] P.J Boland, E. El-Neweihi, F. Proschan “Stochastic
Order for Redundancy Allocations in Series and
Parallel Systems,” Advances in Applied Probability,
1992, pages 161-71.

14


