
Adaptive Rate Control for Streaming Stored Fine-Grained
Scalable Video

Philippe de Cuetos
Institut EURECOM

2229, route des Crêtes
06904 Sophia Antipolis, France

philippe.de-cuetos@eurecom.fr

Keith W. Ross
Institut EURECOM

2229, route des Crêtes
06904 Sophia Antipolis, France

keith.ross@eurecom.fr

ABSTRACT
In this paper we investigate adaptive streaming of stored
fine-grained scalable video over a TCP-friendly connection.
The goal is to develop low-complexity yet high-performing
schemes that adequately adapt to the short- and long-term
variations in available bandwidth. We first present a novel
framework for low-complexity streaming of fine-grained scal-
able video over a TCP-friendly connection. In the context of
this scheme, and under the assumption of complete knowl-
edge of bandwidth evolution, we derive an optimal policy for
a criterion that involves both image quality and quality vari-
ability during playback. Based on this ideal optimal policy,
we develop a real-time heuristic to stream fine-grained scal-
able video over the Internet, and we study its performance
using real Internet traces. We find that our heuristic pol-
icy performs almost as well as the ideal optimal policy for a
wide-range of bandwidth scenarios and when run over ordi-
nary TCP the policy is essentially as good as when running
the policy over popular TCP-friendly algorithms.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

General Terms
Algorithms, Theory, Experimentation

Keywords
Internet video streaming, Fine-Grained Scalability, network-
adaptive applications

1. INTRODUCTION
It is now commonly accepted that the transmission of mul-

timedia streams over the Internet should be made fair with
TCP traffic. From [5], a flow is said TCP-friendly if its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’02, May 12-14, 2002, Miami, Florida, USA.
Copyright 2002 ACM 1-58113-512-2/02/0005 ...$5.00.

arrival rate does not exceed the arrival rate of a confor-
mant TCP connection in the same network circumstances.
A number of TCP-friendly congestion control algorithms
have been proposed recently, such as RAP [12], TFRC [6],
SQRT [3]. As does TCP, TCP-friendly algorithms react
to indications of network congestion by reducing the trans-
mission rate. The transmission rate of TCP-friendly algo-
rithms is typically smoother than that of TCP [17]. Never-
theless, because network congestion occurs at multiple time
scales [10], the bandwidth available to TCP-friendly streams
typically fluctuates over several time scales [17, 6].

In this paper we investigate adaptive streaming of stored
video over a TCP-friendly “connection”. The goal is to
develop low-complexity yet high-performing schemes that
adequately adapt to the short- and long-term variations in
available bandwidth.

Small time-scale bandwidth fluctuations (on the order of
a few RTTs) can be accommodated by maintaining a small
play-back delay of a few seconds from the moment when
the video frame is sent from the server to the time the
frame is decoded at the client. Buffers at the client store
the video frames before they are decoded. Maintaining a
small playback delay also provides the server the opportu-
nity to retransmit lost video packets before their decoding
deadline [8, 13].

Longer time-scale bandwidth fluctuations, on the order
of a few seconds to tens of seconds, can be addressed by
using multiple versions of the same video [4] or a layered-
encoded video [14]. When using a layered-encoded video, the
application needs adaptive control policies to decide which
layers should be streamed at all times [11, 9, 15] in order
to maximize the overall quality of the video rendered to the
user.

In this paper, we study the streaming of 2-layer Fine-
Grained Scalable (FGS) videos. Like the other types of video
scalability (SNR, spatial or temporal [2]), FGS encodes the
video into a base and one or several enhancement layers.
However, with FGS, any number of bits of the enhancement
layer can be suppressed at the server before transmission,
and the decoder can use all of the truncated bitstream to
increase video quality at the client [7]. Recently, bit-plane
based FGS-coding has been added to the MPEG-4 stan-
dard [1]. However our framework is intended to be valid for
any 2-layer FGS-encoded video, and not only MPEG-4 FGS
videos.

The first contribution of this paper is a new framework
for streaming stored FGS video over TCP-friendly connec-

tion. This new framework calls for client buffers, prefetching
throughout playback, and synchronous transmission across
base and enhancement layers. Policies that operate within
this framework require minimum real-time processing, and
are thus suitable for servers that stream a large number of
simultaneous unicast streams.

Our second contribution is to formulate and solve an opti-
mal streaming problem. Our optimization criterion is based
on simplistic, but easily tractable metrics, which account
for the total video display quality as well as variability in
display quality. We develop a theory for determining an
optimal streaming policy under ideal knowledge of the evo-
lution of the future bandwidth. The optimal ideal policy
provides bounds on the performance of real-time policies
and also suggests a real-time heuristic policy. Simulations
from real Internet traces show that the heuristic performs
almost as well as the ideal optimal policy for a wide-range
of scenarios.

We also compare streaming stored-FGS video over an or-
dinary TCP connection to streaming over a TCP-friendly
connection. The performance of current TCP-friendly con-
gestion control algorithms is usually assessed in terms of
their fairness with TCP, responsiveness to changes in net-
work congestion and smoothness of throughput [17]. Be-
cause popular TCP-friendly algorithms have an available
bandwidth that is typically smoother than TCP available
bandwidth, one expects TCP-friendly algorithms to perform
better, particularly for reducing quality fluctuations. How-
ever, our experiments show that video quality fluctuations
are in the same range for both TCP and TCP-friendly algo-
rithms.

This paper is organized as follows. In Section 2 we present
our framework for streaming FGS-encoded video over a sin-
gle TCP-friendly connection. Then, we formulate the opti-
mization problem and define the performance metrics con-
sidered in this paper. In Section 4 we develop a theory for
optimal streaming under ideal knowledge of future band-
width evolution. In the next section, we present our real-
time rate adaptation heuristic, which is inspired from the
optimization theory in Section 4. We use simulations with
Internet traces and simulations with an end-to-end MPEG-4
FGS streaming platform to study the performance of the
heuristic. Finally, in Section 6 we compare the performance
of our heuristic when run on top of TCP to when run on
top of popular TCP-friendly algorithms.

2. FRAMEWORK
Let X(t) denote the available bandwidth at time t. By

permitting prefetching into client buffers, our server streams
the video at the maximum rate X(t) at each instant t. We
suppose that the connection is made reliable, e.g., by us-
ing retransmissions [8], so that losses may only occur due
to missed deadlines. Selective retransmissions are possible
because of client buffering. Buffering will also allow us to
neglect in our analysis the transmission delay between the
server and the client.

The stored video is encoded into two layers, the Base
Layer (BL) and the fine-grained Enhancement Layer (EL).
For simplicity, we assume that the video is CBR-encoded.
We denote the encoding rates of the base and enhancement
layers by rb and re, respectively. The length of the video is
denoted by T sec.

Figure 1 shows the architecture of the server. The server

���
���

���������������������������
���������������������

�������������������������������� ���������������������

���������������������EL bitstream

BL bitstream

X(t)

Xb(t)

Xe(t)
re

rb

Ks(t).re

Figure 1: Server

stores the video as two separate files: one file contains the
bitstream pertaining to the base layer and the other file
contains the bitstream pertaining to the enhancement layer.
Because the server transmits at maximum rate X(t), at any
given instant of time the server may be sending prefetched
frames to the client that are minutes into the future. To
reduce the server complexity, we require that the server al-
ways sends the base and enhancement instances of the same
frame together, thus acting synchronously. This implies that
at the client the number of prefetched BL frames is always
equal to the number of prefetched EL frames.

For each transmitted frame, the server sends the entire
BL of the frame and a portion of the EL of the frame. Be-
cause of the fine-grained property of the enhancement layer,
the server can truncate the EL portion of the frame at any
level. Thus, at each instant, the server must decide how
much enhancement layer data to send. Specifically, in our
design, time is broken up in slots [tk, tk+1), where t0 = 0
and tn = T . At the beginning of a slot, the server deter-
mines the enhancement layer level, denoted by Ks(k) · re,
that it streams for the duration of the slot. Thus, as shown
in Figure 1, all frames sent during slot [tk, tk+1) will include
the entire base layer and a same fraction of the enhancement
layer, Ks(k) ∈ [0, 1]. The frames sent during the slot may
be prefetched frames for display seconds or even minutes
into the future. The length of a slot can be chosen so that
the slot is composed of one or more complete video scenes.
This would keep constant the fraction of enhancement layer
that is transmitted for each video scene, avoiding changes
in perceptual image quality within the same video scene.
The length of a time slot should be on the order of seconds,
which will also help to maintain low server complexity. For
simplicity, we will assume that the slot length is equal to a
constant C, so that we can write tk = k ·C, for k = 0, . . . , n.

The rate at which the server transmits frames into the
network depends on the available bandwidth during the slot,
i.e X(t) for tk ≤ t < tk+1. Because we are requiring that the
base and enhancement layer components of a frame be sent
at the same time, the available bandwidth dedicated to the
base layer and to the enhancement layer at time t ∈ [tk, tk+1)
is respectively:

Xb(t) =
rb

rs(k)
X(t) and Xe(t) =

Ks(k) · re

rs(k)
X(t) (1)

where rs(k) = rb + Ks(k) · re is the total coding rate of
the video being streamed between times tk and tk+1. By

	�	�	�	�	�		�	�	�	�	�		�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���������������������������
���������������������������

�
�
�
�
�������

������������

D
ecoderBL prefetch buffer

EL prefetch bufferX(t)

Ye(t)

Kc(t).re

rb

Yb(t)

Xe(t)

Xb(t)

Figure 2: Client

extension, the total coding rate of the video being streamed
at time t will be denoted by rs(t) = rb + Ks(t) · re.

As shown in Figure 2, the client stores temporarily the
data coming from the network in base and enhancement
layer prefetch buffers. Let Yb(t) and Ye(t) denote the amount
of data stored in the prefetch buffers at time t. At time t, the
decoder drains both buffers at rates rb and Kc(t) · re, where
Kc(t) ∈ [0, 1] is the fraction of enhancement layer available
at the client for the frame which is scheduled to be decoded
at time t. The encoding rate of the video being displayed at
the client at time t can be expressed as rc(t) = rb+Kc(t)·re.

The server initially sends ∆0 seconds time-worth of full
quality video to the client. This phase is called the initial
build-up and ∆0 is the initial playback delay between the
server and the client. At time t = 0, the client starts to
decode the data from its prefetching buffers and to render
the video, while the server streams the rest of the video
frames. To simplify our analysis, we suppose that, once
the playback starts at the client, the user is going to watch
the video until the last frame without performing any VCR
command. Let tend denote the time when the server stops
sending video frames. We will have tend < T if the server
has sent the last video frame before video is fully rendered;
otherwise, we will have tend = T .

We denote ∆(t) for the number of seconds of prefetched
video contained in the prefetch buffers at time t. Since
the server acts synchronously and each layer is streamed in
proportion to its encoding rate, the base and enhancement
prefetch buffers will always have the same value of ∆(t) for
each time t. Because the server changes the encoding rate
of the enhancement layer at each time tk, the enhancement
layer prefetch buffer contains parts of the video encoded at
different bit-rates. However, because the base layer is never

truncated, we can write at each time t, ∆(t) = Yb(t)
rb

. Since,

at time t, the server streams a video frame which is going to
be decoded by the client ∆(t) seconds into the future, the
total coding rate of the video which is decoded at time t can
be expressed as:

rc(t + ∆(t)) = rs(t), or rc(t) = rs(t − ∆(t)). (2)

To simplify notation, we denote ∆k = ∆(tk). We assume
that, at each time tk, the server knows the value of ∆k (e.g.
through periodical receiver reports).

Because we suppose that the connection is made reliable,
losses at the client only occur when data arrives at the client

X(t) Available bandwidth at time t

rb Coding rate of the base layer
re Coding rate of the fine-grained enhancement layer
T Length of the video in sec.
Ks(k) Proportion of the EL sent by the server at time tk

Kc(t) Proportion of the EL decoded by the client at time t

rs(k) Total coding rate of the video sent between tk and tk+1

rc(t) Total coding rate of the video decoded at time t

C Length of a server slot in sec.
n Number of time slots
tend Ending time of the streaming
Yb(t) Content of the client BL prefetch buffer at time t

Ye(t) Content of the client EL prefetch buffer at time t

∆0 Initial build up delay
∆(t) Playback delay at time t

∆k Playback delay at time tk

Table 1: Notations

after their decoding deadline. Such data will not be decoded.
Assuming a playback delay of ∆k > 0 at time tk, losses may
only start to happen at time tk < t < tk+1 when ∆(t) = 0
and when X(t) < rs(t), i.e., when the client buffers are
empty and the available bandwidth is not high enough to
feed the decoder at the current video encoding rate. Since
the server acts synchronously for both layers and each layer
is sent in proportion to its coding-rate, losses can only hap-
pen for both layers at the same frame time. When there
is loss at time t ∈ (tk, tk+1), we suppose that the server is
not able to react: it will keep streaming the current part
of the video, even if it will not meet its decoding deadline.
Meanwhile, the client keeps incrementing its decoding time-
stamp and waits for the part of the video that has the new
current decoding deadline. A negative ∆(t) indicates that
the part of video arriving from the server has an earlier de-
coding deadline than the part of the video that the client is
waiting for. Therefore, there will be loss of data whenever
∆(t) < 0. Table 1 summarizes our notations.

3. PROBLEM FORMULATION
A transmission policy, denoted by rs = (rs(0), . . . , rs(n − 1)),

is a set of successive video encoding rates, each of which is
chosen by the server at the beginning of a time slot [tk, tk+1),
for video sequence k. In order to provide the user with the
best perceived video quality, the transmission policy should
minimize a measure of total distortion [18], such as the
commonly employed MSE (Mean Squared Error), and also
minimize variations of distortion between successive images.
Each video sequence may have different rate-distortion char-
acteristics, and for a given video sequence k, the distortion
typically does not vary linearly with the sequence chosen
coding rate rs(k).

In this study, we restrict to transmission policies that (i)
ensure a minimum of quality, by ensuring the decoding of
the BL data without loss, (ii) maximize the bandwidth effi-
ciency, i.e. the total number of bits decoded given the avail-
able bandwidth, which gives a good indication of the total
video quality, and (iii) minimize the variations of the ren-
dered coding rate between successive video sequences, which
gives an indication of the variations in distortion.

Although these metrics are simple and independent of the
rate-distortion characteristics of a particular video, our anal-
ysis remains useful for deriving real-time heuristics, and for
comparing different transport protocols.

3.1 Bandwidth Efficiency
We define the bandwidth efficiency E as the ratio between

the average number of bits decoded at the client by seconds
over the total rate of the video:

E =
r̄c

rb + re

where r̄c =
total number of bits decoded

T
(3)

Observing that the video data at the receiver may come
either from the initial build up or from the streaming, we
can write :

E =
∆0(rb + re) +

∫ tend

0
X(t)dt − (nb of bits lost)

T · (rb + re)
(4)

Recall that the “number of bits lost” is the number of bits
sent by the server that do not make their deadline at the
client.

3.2 Coding Rate Variability
Previous studies in [9] have designed various measures to

account for the rate variability in the case of layered-video
with a small number of layers. Here, we propose a measure
for the case of FGS encoding, for which the displayed video
encoding-rate rc(t) can take continuous values between rb

and rb +re. Since from Equation 2, rc(t) = rs(t−∆(t)), and
since rs(t) = rs(k) over all intervals [tk, tk+1), differences
in consecutive values for rc(t) at the client are accounted
by differences in consecutive values for rs(k) at the server.
Therefore the following measure accounts for differences in
consecutive values for the encoding rate of the video being
displayed to the user:

V =
1

r̄s

√

√

√

√

1

m

m−1
∑

k=0

[rs(k) − rs(k + 1)]2 (5)

where m < n is the index of the last time slot during which
the server has data left to stream, i.e. the streaming ends
at time tend ∈ [tm, tm+1). r̄s denotes the mean value of the
time series {rs(k)}, for k = 0, . . . , m.

Because the human eye is more likely to perceive a high
variation in quality than a small one, this measure penalizes
high differences in consecutive values for rs(k). Moreover,
in FGS coding, the less important bit-planes correspond to
higher values of rs(k). Therefore, for the same video with
both layers encoded at the same rb and re, the higher the
mean value of the transmitted coding rates rs(k), the less
visible the differences in consecutive values for rs(k). This
is why our measure of rate variability is normalized by r̄s.

4. OPTIMAL TRANSMISSION POLICY
In this section we assume that the available bandwidth

for the connection, X(t), from beginning to end of trans-
mission, is known a priori. This will allow us to formulate
and solve an optimal stochastic control problem. The anal-
ysis and solution serves two purposes. First, it provides
a useful bound on the achievable performance when band-
width evolution is not known a priori. Secondly, the theory
helps us design an adaptation heuristic for the realistic case
when the bandwidth is not known. The optimization crite-
ria studied in this paper prioritize three metrics: base-layer
loss; bandwidth efficiency; and coding rate fluctuations.

4.1 Condition for No Losses
Losses of base layer data at the decoder may degrade con-

siderably the perceived video quality. Depending on the
level of error resilience used by the coding system, losses
may cause freezing of the image for some time. Thus, base
layer losses can be more disturbing for the overall quality
than the number of bits used to code the video (represented

by
∫ tend

0
X(t)dt in (4)). In this subsection we determine a

necessary and sufficient condition for the transmission policy
rs = (rs(0), . . . , rs(n−1)), to have no base-layer loss. Recall
that in our synchronous model no base layer loss implies no
enhancement layer loss. To this end, denote:

βk(∆) = min
t∈[tk+∆,tk+1]

∫ t

tk

X(u) du

t − (∆ + tk)
(6)

Theorem 1. The transmission policy (rs(0), . . . , rs(n − 1))
yields no loss of data over the whole decoding duration if and
only if, for all k = 0, . . . , n − 1, rs(k) ≤ βk(∆k) whenever
∆k < C.

This theorem provides, for each slot, an upper-bound on the
video coding rate that yields no loss. This bound depends
on the contents of the prefetch buffers at the beginning of
the slot, and on the available bandwidth during the duration
of the slot.

Proof. Having no loss of data over [0, T] is equivalent
to having no loss of data over each interval [tk, tk+1). Fix a
k ∈ {0, . . . , n − 1}. If ∆k ≥ C, there is enough data in the
prefetching buffers at time tk to insure the decoding without
loss during the current slot [tk, tk+1) of length C seconds.

Now suppose that ∆k < C. Clearly there is no loss in the
interval t ∈ [tk, tk + ∆k], as the data in the prefetch buffers
at time tk is sufficient to feed the decoder up through time
tk + ∆k. At time tk + ∆k all of the data that was in the
prefetch buffer at time tk is consumed. Subsequently, the
client starts to consume data that was sent after time tk,
which has been encoded at rate rs(k). Thus, after time
tk + ∆k and at least up to time tk+1, the client attempts to
consume data at rate rs(k).

It follows that there is no loss if and only if for every time
t ∈ [tk + ∆k, tk+1] the total amount of data that the client
attempts to consume in [tk + ∆k, t] is less than the amount
of data that was transmitted in the interval [tk, t], that is, if
and only if for all t ∈ [tk + ∆k, tk+1]

rs(k) · [t − (∆k + tk)] ≤

∫ t

tk

X(u) du (7)

Rearranging terms in the above equation gives the condition
in the Theorem.

Definition 1. Let L(∆0) be the set of all possible trans-
mission policies rs that satisfy Theorem 1:

L(∆0) := {rs ∈ [rb, rb + re]
n : no loss in [0, T]} (8)

4.2 Maximizing Bandwidth Efficiency
In this subsection we consider the problem of maximiz-

ing bandwidth efficiency over all policies that give no loss.
When the no loss condition in Theorem 1 holds, then the
overall efficiency E given in (4) is maximized if and only if

∫ tend

0
X(t) dt is maximized, which is equivalent to maximiz-

ing tend.
Let tend(rs) ≤ T be the time at which the server finishes

streaming under transmission policy rs ∈ L(∆0). For a
fixed value of ∆0, we can define the maximum ending time
of streaming under all transmission policies in L(∆0), as:

tmax
end = max

rs∈L(∆0)
tend(rs) (9)

We can observe that tmax
end only depends on ∆0 and X(t) for

t ∈ [0, T].
Now, let E∗ be the maximum value of E that can be

attained by a policy rs ∈ L(∆0), and let E(∆0) be the set
of policies rs ∈ L(∆0) that attain E∗. Since maximizing E
is equivalent as maximizing tend, we have:

Theorem 2. The set of transmission policies that maxi-
mizes E satisfies:

E(∆0) = {rs ∈ L(∆0) : tend(rs) = tmax
end } (10)

In particular, the maximum value of E is given by:

E∗ =
∆0

T
+

∫ tmax

end

0
X(t) dt

T · (rb + re)
(11)

This simply states that, in order to maximize bandwidth
efficiency, the streaming application should try to exploit the
transmission channel as long as possible. A transmission
policy which is not sufficiently aggressive in its choice of
rs(k) may have streamed all the video frames long before the
end of rendering at the client (tend(rs) < tmax

end ≤ T), and
thereby not use the additional bandwidth that is available
until the end of rendering.

Let X̄ = 1
T

∫ T

0
X(t) dt be the average available bandwidth

during the playback interval [0, T]. A special case to con-
sider is when tmax

end = T , i.e. when there exists transmission
policies in L(∆0) that can maintain the streaming until the
very end of the rendering at the client. In this case, we have:
E∗ = ∆0

T
+ X̄

rb+re
. Otherwise, when tmax

end < T , we will have:

E∗ < ∆0

T
+ X̄

rb+re
.

4.3 Minimizing rate variability
From all the set of transmission policies rs which yield

no loss of data and maximize bandwidth efficiency E, i.e.
rs ∈ E(∆0), we will now look for those which minimize the
rate variability V , given the available bandwidth X(t). We
will show that this problem can be solved by finding the
shortest path in a graph. Let V ∗ be the minimum value of
V that can be attained by a policy rs ∈ E(∆0).

Definition 2. We define the optimal state graph G of our
system as the graph represented in Figure 3, whose nodes
represent, at each time tk, all the possible sampled values for
the buffering delay at time tk, i.e. ∆k. The arcs represent
the evolution of the buffering delay after the streaming of
the video from time tk to time tk+1, such that there is no
loss of video data over the entire duration of the streaming.
The initial state of the graph represents the initial build up
of ∆(0) = ∆0 seconds of video data, present in the client
prefetch buffers at time t = 0. The final state is reached
at the time when the server shall finish streaming its video
data in order to maximize the bandwidth efficiency E, i.e.
at time t = tmax

end ∈ [tm, tm+1).

Theorem 3. The problem of finding an optimal trans-
mission policy r∗s ∈ E(∆0) which minimizes the variability
V can be solved by finding the shortest path in the system
state graph G.

Proof. From the definition of the optimal state graph
G, the no loss condition expressed in Theorem 1 is satisfied.
Considering the streaming of the video by the server between
times tk and tk+1, we thus can easily show that:

∀k ∈ {0, . . . , m− 1} , ∆k+1 = ∆k +

∫ tk+1

tk

X(t)dt

rs(k)
−C (12)

This means that the transition from one state at time tk to
the next possible state at time tk+1 is completely determined
by the choice of rs(k). Then, all the possible paths between
the initial state to the final state will give all the possible
transmission policies rs ∈ L(∆0).

The final state of the graph insures that all these trans-
mission policies will satisfy tend(rs) = tmax

end , thus insuring
by Theorem 2 that the maximum bandwidth efficiency is
reached.

The cost of an arc from state ∆k = ∆ to ∆k+1 = ∆′ will
be denoted ck(∆, ∆′), as shown on Figure 3. This cost will
be obtained recursively during the computation of the short-
est path from the initial state to the final state, obtained
by dynamic programming. It will be defined as (r − r′)2,
where r is the unique value of rs(k) that makes the system
transition from state ∆k = ∆ to ∆k+1 = ∆′, and r′ the
value of rs(k + 1) that makes the system transition from
state ∆k+1 = ∆′ to the next state in the shortest path from
∆k+1 = ∆′ to the final state. This way, the shortest path
from the initial state to the final state yields r∗s which mini-
mizes the measure of variability V , as given in Section 2.

Given ∆0 and X(t), this theorem assumes the knowledge
of the value of tmax

end . Let’s assume that E(∆0) 6= ∅ (it also
means that L(∆0) 6= ∅, i.e. we can at least stream all the
base layer without loss). In this case, tmax

end is defined in
(0, T]. We can first set its value to T and decrease it re-
cursively until we find a shortest path in the optimal state
graph G. Indeed, if for a given possible value of tmax

end there
exists no possible path in G from the initial state to the final
state, it will mean that E(∆0) = ∅, which contradicts our
hypothesis.

Given ∆0 and X(t), we have implemented the algorithm
for finding the shortest path in graph G as well as tmax

end ,
yielding the minimum of variability V ∗. The actual number
of nodes in the graph is difficult to assess. It depends on the
size of L(∆0), the value of tmax

end and the sampling precision
of the buffering delays ∆k.

5. REAL-TIME RATE ADAPTATION ALGO-
RITHM

Henceforth, we no longer assume that the available band-
width X(t) is known a priori for the whole duration of the
streaming. Motivated by the theory of the previous section,
we will provide a heuristic real-time policy that will adapt
on-the-fly to the variations of X(t). The theory of the pre-
vious section will also provide a useful bound to which we
will be able to compare the performance of our heuristic.

for k = 0 to n − 1:
- Retrieve the value of ∆k from the client
- Compute Xavg(k − 1)
- Compute the value of rs(k):

If ∆k ≤ C
rs(k) = rb

Else if C < ∆k ≤ 2C
rs(k) = α · Xavg(k − 1) + (1 − α) · rs(k − 1)

Else if ∆k ≥ 2C

rs(k) = α · Xavg(k − 1) · ∆k

2C
+ (1 − α) · rs(k − 1)

Figure 4: Real-time Algorithm

Figure 4 presents our real-time algorithm. At the begin-
ning of each time slot of length C seconds, i.e., at each time
tk, the server fixes the encoding rate for the slot, i.e., it fixes
rs(k). Recall that the server knows the number of seconds
of video data contained in the client prefetch buffers, ∆k, at
each time tk. The server can compute the average goodput
as seen in the previous slot, between time tk−1 and tk, de-
noted by Xavg(k − 1). It can be shown that if there is no
loss of data in the previous time slot, then Xavg(k − 1) can

be expressed as: Xavg(k − 1) = rs(k − 1) ·
∆k−1−∆k+C

C
.

As shown in Figure 4, at the beginning of each slot the al-
gorithm operates according to whether ∆k ≤ C, C < ∆k ≤ 2C,
or ∆k ≥ 2C. When ∆k < C, there is potential loss in the up-
coming slot; because minimizing base-layer loss is our most
important objective, we set rs(k) = rb, that is, we send only
the base layer during the slot. The no loss condition as ex-
pressed in Theorem 1, i.e., rs(k) ≤ βk(∆k), would give a less
conservative choice for rs(k), but βk(∆k) strongly depends
on the variations of the available bandwidth in the next C
seconds, which is very difficult to predict. Additionally, this
choice attempts to maintain a minimum of C seconds of data
in the client buffer, which will be sufficient to mitigate jitter
and allow for retransmission of lost packets.

When C < ∆k ≤ 2C, the server can start increasing the
value of rs(k). In order to maintain a high bandwidth effi-
ciency E, we know from Theorem 2 that we must make the
streaming last as long as possible, i.e., we need to maximize
tend. Therefore, we use a video encoding rate that tracks
the average available bandwidth of the connection. But the
values of the averages Xavg(k) may have large fluctuations,
as discussed in Section 1. So, we include a smoothing factor
α ∈ (0, 1), which aims to smooth the variations of Xavg(k).
By choosing rs(k) = α · Xavg(k − 1) + (1 − α) · rs(k − 1),
we try to minimize the differences in consecutive values of
rs(k), while getting close to a smoothed average of the avail-
able bandwidth. The value of α can be chosen to trade off
small quality variability (small α) with better overall band-
width utilization (high α). When ∆k > 2C, our heuristic is
more aggressive with respect to the available bandwidth (by

a factor of ∆k

2C
). The heuristic further increases the value

of rs(k), resulting in less video data in the client prefetch
buffers, and preventing the streaming from ending too early.

5.1 Simulations from Internet traces
We first made simulations from real Internet TCP traces.

We used snoop on Solaris to collect goodput from 5mn-long
TCP connections at different times of the day between Uni-
versity of Pennsylvania, Philadelphia and Institut Eurecom,

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

time in s

ra
te

 in
 M

b/
s

TCP goodput
r
s
 real−time

r
s
 optimal

0 50 100 150 200 250 300
0

5

10

15

20

25

time in s

tim
e

in
 s

playback delay − real−time
playback delay − optimal

Figure 6: Rate adaptation - trace 1, rb = re = 1
Mbps, X̄1 = 1.35 Mbps, α = 0.2

France. We performed all of the simulations with a time
slot length of C = 5s, and a video length of T = 300s.
The client prefetch buffers collect ∆0 = 6s of video data be-
fore the client starts decoding and rendering. We used four
traces, whose 1 second averages are depicted in Figure 5.

Figure 6 shows the results of a simulation, for which we
used TCP trace 1 with average available bandwidth X̄1 =
1.35 Mbps. The coding rates of both layers are set to rb =
re = 0.75 · X̄1 = 1 Mbps, so that the total coding rate of
the video is strictly superior to the average available band-
width. The smoothing factor is set to α = 0.2. The top
plot shows the transmitted video encoding rate of our real-
time heuristic, the encoding rate of the optimal transmission
policy (given by Theorem 3) and the connection goodput.
The plot below shows, at each time tk, the amount of data
in seconds in the client prefetch buffers, ∆k, for both the
real-time and the optimal transmission policies. We observe
that the optimal policy prefetches up to 25 seconds of video
data during playback to smooth bandwidth variations and
achieve the maximum bandwidth efficiency. The real-time
transmission policy prefetches up to 12 seconds during play-
back to smooth bandwidth fluctuations, although it doesn’t
smooth as well as the optimal transmission policy. The
top plot shows that the real-time algorithm adapts well to
the varying available bandwidth. In particular, after time
t = 200ms the video coding-rate drops to its minimum value,
rb, because the playback delay drops below C = 5 seconds,
as shown on the second plot. The real-time transmission
policy provides a bandwidth efficiency E that is close to the
maximum (E = .63 compared to E∗ = .68). Indeed, the
real-time policy nearly satisfies Theorem 2 since it doesn’t
stop transmitting video frames until just one time slot before
the last one (rs(295) = 0 on the graph).

In order to study the performance of our real-time al-
gorithm in various bandwidth situations with respect to the
video coding rate, we define the normalized base layer coding
rate rn = rb

X̄
. For simplicity, we assume rb = re throughout

the rest of the paper. Figures 7 and 8 show the evolution of
the measures E and V as a function of rn for the same trace

∆1 =

0

∆k+1 =∆k = ∆m =

T − kC

T−

T −mC
(k + 1)C

T − tmax
end

x

∆0

∆

∆
′

∆
′′

0 0 0

T − C

ck(∆, ∆
′

)

t = 0 t = C t = kC t = (k + 1)C t = mC t = tmax
end

∆k+2 =
∆(tmax

end) =

Figure 3: Optimal state graph G

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time in s

ra
te

 in
 M

b/
s

trace 1

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time in s

ra
te

 in
 M

b/
s

trace 2

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time in s

ra
te

 in
 M

b/
s

trace 3

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time in s

ra
te

 in
 M

b/
s

trace 4

Figure 5: 1 second average goodput of the collected TCP traces

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

10

20

30

40

50

60

70

80

90

100

110

r
n
 = r

b
/X

mean

E
 x

 1
00

 E
E*

Figure 7: Bandwidth Efficiency, α = 0.2

as in Figure 6 and the same constants. Figure 7 depicts the
variations of E compared to the maximum achievable band-
width efficiency as given in Theorem 2. We see that the real-
time heuristic’s overall bandwidth efficiency is close to the
maximum for rn between 0.4 and 0.8, corresponding to the
favorable situation when the average available bandwidth is
high enough to sustain the streaming of the base layer and a
part of the enhancement layer without loss. When rn > 0.8,
the average available bandwidth is closer to the base layer
coding rate, resulting in some loss of base layer data, which
increases the difference between the achieved bandwidth ef-
ficiency and the maximum.

Figure 8 shows the evolution of variability (as defined in
Section 3), given by our adaptation heuristic. It also shows
the value of V , denoted by Vel, obtained with the streaming
policy which just adds or removes the entire EL once during
the whole streaming duration. We did not plot the mini-
mum variability obtained by the optimal allocation since it
is always very close to zero, and thus insignificant. When we
consider the variability of our real-time algorithm for FGS
video, we notice from Figure 8 that V reaches a maximum
at about rn = 0.6, then decreases as rn increases. Indeed,
when rn becomes large, the average available bandwidth be-
comes lower than rb + re, resulting in fewer opportunities to
stream a high bit-rate video, i.e., to choose high values for
rs(k). We also see that, in most bandwidth conditions, the
total variability obtained by our heuristic is lower or roughly
equal to Vel, which gives an indication of the low level of rate
variations achieved by our heuristic.

In Table 2, we give the results in terms of E, V and losses
of video data for the three other traces in Figure 5, and for
different values of rn. The results also confirm the good per-
formance of our real-time algorithm in terms of high band-
width efficiency and low variability for a variety of band-
width scenarios.

5.2 Simulations from an end-to-end MPEG-4
FGS streaming platform

We also did simulations with a local testbed consisting of a
streaming server and a client with an MPEG-4 FGS-decoder
(provided by Thomson Multimedia through the French na-
tional project VISI). The video was a 25 fps 4-minute video
clip depicting the city of Brest, France and featuring both
high and low motion sequences. The BL and EL coding rates
were respectively rb = 256 Kbps and re = 768 Kbps. The

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

20

40

60

80

100

120

140

r
n
 = r

b
/X

mean

V

 V
V

el

Figure 8: Rate Variability, α = 0.2

link between the server and the client was set to Xmax =
1024 Kbps = rb + re, and variable cross traffic with mean
X̄ = 512 Kbps was generated from the server to the client, in
order to yield a variable available bandwidth for the stream-
ing application. Table 3 shows the results obtained by our
adaptive algorithm when ∆0 = C = 5 sec and α = 0.2,
compared with the cases of BL only, both layers without
loss, and the case when there is no rate-adaptation with a
constant encoding rate rs(k) = X̄ = 512 Kbps. Results
are given in terms of mean PSNR and sum of absolute dif-
ferences in PSNR for successive images. As we can see, the
adaptation algorithm gives better overall image quality com-
pared with the static case, at the price of a small increase in
total quality variability between successive images (still less
than the variability induced when streaming only the BL).

6. STREAMING OVER TCP-FRIENDLY AL-
GORITHMS

In order to reduce image quality variation, a number of
studies advocate the use of smooth-rate TCP-friendly algo-
rithms for streaming [16, 11, 6]. In this section we show that,
for stored FGS-encoded video, streaming over ordinary TCP
can achieve essentially the same low level of quality variabil-
ity that can be achieved with a smooth-rate TCP-friendly
algorithm. We achieve this low-level of variability by com-
bining prefetching and coarse-grained rate adaptation, as
provided by our real-time heuristic of the previous section.

Our real-time adaptation algorithm can be run on top of
TCP or on top of a TCP-friendly algorithm such as TFRC
(TCP-Friendly Rate Control), defined in [6]. We used ns to
collect TCP and TFRC traces under the same network con-
ditions. The network topology is the commonly employed
“single bottleneck,” for which congestion only occurs in the
link between two routers (we used access links with delay
10ms and a 15Mbits bottleneck link with delay 50ms). If
the playback delay between the server and the client, ∆(t),
is maintained at an order of a few seconds, the server has
the ability to retransmit lost packets. Therefore we assume
that our TFRC connection can be made fully reliable. We
use a RED bottleneck queue to avoid global TCP synchro-
nization. From these collected traces, we run the real-time
adaptation algorithm for different values of rn and α, and
compare the results in terms of measures E and V . We de-

Trace 2 Trace 3 Trace 4
X̄ = 1.34 Mbps X̄ = 1.31 Mbps X̄ = 1.40 Mbps

E/E∗ V/Vel losses E/E∗ V/Vel losses E/E∗ V/Vel losses
rb

X̄
= 0.6 .83/.85 52/116 0 .84/.85 68/116 0 .83/.85 106/116 0

rb

X̄
= 0.75 .66/.69 33/97 0 .67/.69 46/97 0 .63/.69 86/97 0.7s

rb

X̄
= 0.9 .56/.58 19/77 0 .56/.58 25/77 0 .52/.58 50/77 1.1s

Table 2: Simulations from Internet traces

mean PSNR diff PSNR
BL without loss 29.46 1944
EL with rs(k) = cst = 512 Kbps 29.77 1524
EL with ∆0 = C = 5 s, α = 0.2 29.94 1762
EL without loss 31.83 1468

Table 3: Simulation with a MPEG-4 FGS decoder

fine the network load as the number of simultaneous (TCP
and TFRC) connections inside the bottleneck. We vary the
load between 5 and 40.

The first part of Table 4 shows, as a function of the
network load for a base layer normalized coding rate of
rn = 0.75, the minimum variability achieved by the optimal
transmission policy given in Theorem 3. As we can see, the
minimum variability when using TCP is only slightly higher
than the minimum variability that can be achieved when
using TFRC, even though the TFRC long-term throughput
is considerably smoother than TCP, especially at low loss
rates [6, 17]. We also observe that for both cases V ∗ re-
mains low for all network loads, which indicates that our
application-layer smoothing approach has the potential to
work well in a wide range of network conditions.

We then applied our real-time algorithm to both the TCP
and TFRC traces. For a given network load, we varied the
smoothing parameter α between 0.01 and 0.95, which gives
different values for the couple (E, V). Then, among the
choices of α that bring E to within 1% of the maximum,
we keep the α that minimizes the variability V . The sec-
ond part of Table 4 gives the results for Vtfrc and Vtcp, along
with the variability obtained with a transmission policy that
would add the full EL just once, denoted by Vel. The last
two columns show the corresponding value of α. We first
observe that Vtfrc is, for most network loads, less than Vtcp.
However, both values remain quite low (usually less than
Vel), and the difference may probably not be noticed by the
user. We also observe that for a network load with less than
30 competing TCP and TFRC connections, the smoothing
parameters that minimizes V while insuring a high E sat-
isfy αtfrc ≥ αtcp. Indeed, because TFRC has smoother rate
variations than TCP in a low loss environment, the applica-
tion will need to smooth bandwidth variations of TCP more
than TFRC.

Finally, Figure 9 shows the rate adaptation provided by
the optimal policy and the real-time algorithm for TCP
and TFRC connections, respectively. The bottleneck link
is shared by 25 long-lived TCP and 25 long-lived TFRC
connections, and the base layer normalized encoding rate is
set to rn = 0.75. In both cases, we use the optimal value
of the smoothing parameter α in our real-time algorithm
(as given in Table 4) for a network load of 25, i.e., we use

load V ∗
tfrc V ∗

tcp Vtfrc Vtcp Vel αtfrc αtcp

5 6 6 42 74 97 0.15 0.01
10 6 10 61 55 97 0.01 0.01
15 5 8 42 43 97 0.07 0.04
20 7 12 8 85 97 0.02 0.02
25 6 8 49 93 97 0.15 0.01
30 6 9 50 23 97 0.15 0.01
35 6 6 49 82 97 0.05 0.2
40 6 11 83 116 97 0.01 0.04

Table 4: Performance as a function of network load

αtfrc = 0.15 and αtcp = 0.01. As in Figure 6, the top
plot in both figures shows the coding rate of our real-time
heuristic, the coding rate of the optimal transmission pol-
icy, and the connection goodput. The bottom plot shows,
at each time tk, the amount of data in seconds in the client
prefetch buffers, ∆k, for both the real-time and the optimal
transmission policies.

We first compare the real-time transmission policies in
both figures. The top plots show that the real-time rate
adaptation algorithm yields very smooth variations in the
transmitted video coding rate for both TCP and TFRC,
which is consistent with the low values obtained for Vtfrc

and Vtcp in Table 4 when load = 25. Furthermore, the real-
time algorithm sustains the duration of the streaming almost
until the end of the rendering in both cases, ensuring a high
overall bandwidth efficiency. When comparing the bottom
plots, we see however that the real-time algorithm needs to
prefetch up to 30 seconds of video to smooth variations of
TCP, while it needs to prefetch only 13 seconds of video
in the case of TFRC. When comparing the optimal trans-
mission policies in both figures, we see that the variability
attained is negligible in both cases, and the optimal trans-
mission policies require up to 10 seconds of video data to be
prefetched in both cases.

7. CONCLUSION
We presented a new framework for streaming stored FGS

encoded videos. We derived analytical results and a method
to find an optimal transmission policy, which maximizes a
measure of bandwidth efficiency, while minimizing a mea-
sure of coding rate variability. We then presented a real-time
algorithm for adaptive streaming of FGS video. Our sim-
ulations showed that our heuristic yields near-optimal per-
formance in a wide range of bandwidth scenarios. Finally,
in the context of streaming stored FGS video, using client
buffering, we have argued that streaming over TCP gives
video quality results that are comparable with streaming
over smoother TCP-friendly connections. In future work we
intend to improve the performance of our heuristic by tak-

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time in s

ra
te

 in
 M

b/
s

TCP

TCP goodput
r
s
 real−time

r
s
 optimal

0 50 100 150 200 250 300
0

5

10

15

20

25

30

time in s

tim
e

in
 s

playback delay − real−time
playback delay − optimal

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time in s

ra
te

 in
 M

b/
s

TFRC

TFRC goodput
r
s
 real−time

r
s
 optimal

0 50 100 150 200 250 300
0

5

10

15

20

25

30

time in s

tim
e

in
 s

playback delay − real−time
playback delay − optimal

Figure 9: Rate adaptation for TCP and TFRC - load = 25, αtcp = 0.01, αtfrc = 0.15

ing into account the different rate-distortion characteristics
of successive video scenes.

8. REFERENCES
[1] ISO/IEC JTC1/SC29/WG11 Information Technology

- Generic Coding of Audio-Visual Objects : Visual
ISO/IEC 14496-2 / Amd X, December 1999.

[2] R. Aravind, M. R. Civanlar, and A. R. Reibman.
Packet Loss Resilience of MPEG-2 Scalable Video
Coding Algorithms. IEEE Trans. Circuits and Systems
for Video Technology, 6:426–435, October 1996.

[3] D. Bansal and H. Balakrishnan. Binomial Congestion
Control Algorithms. In Proc. of IEEE Infocom, pages
631–640, Anchorage, AL, May 2001.

[4] P. de Cuetos, D. Saparilla, and K. W. Ross. Adaptive
Streaming of Stored Video in a TCP-Friendly Context
: Multiple Versions or Multiple Layers ? In Proc. of
the International Packet Video Workshop, Kyongju,
Korea, May 2001.

[5] S. Floyd and K. Fall. Promoting the Use of
End-to-End Congestion Control in the Internet.
IEEE/ACM Trans. on Networking, 7(4):458–472,
August 1999.

[6] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based Congestion Control for Unicast
Applications. In Proc. of ACM SIGCOMM,
Stockholm, Sweden, August 2000.

[7] W. Li. Overview of Fine Granularity Scalability in
MPEG-4 Video Standard. IEEE Trans. on Circuits
and Systems for Video Technology, 11(3):301–317,
March 2001.

[8] D. Loguinov and H. Radha. On Retransmissions
Schemes for Real-time Streaming in the Internet. In
Proc. of Infocom, pages 1310–1319, Anchorage, AL,
May 2001.

[9] S. Nelakuditi, R. Harinath, E. Kusmierek, and Zhang
Z. Providing Smoother Quality Layered Video Stream.

In Proc. of NOSSDAV ’00, Chapel Hill, North
Carolina, June 2000.

[10] V. Paxson. End-to-End Internet Packet Dynamics.
IEEE/ACM Trans. on Networking, 7(3):277–292, June
1999.

[11] R. Rejaie, D. Estrin, and M. Handley. Quality
Adaptation for Congestion Controlled Video Playback
over the Internet. In Proc. of ACM SIGCOMM, pages
189–200, Cambridge, September 1999.

[12] R. Rejaie, M. Handley, and D. Estrin. RAP: An
End-to-End Rate-Based Congestion Control
Mechanism for Realtime Streams in the Internet. In
Proc. of IEEE Infocom, pages 1337–1345, New York,
March 1999.

[13] I. Rhee. Error Control Techniques for Interactive
Low-bit Rate Video Transmission over the Internet. In
Proc. of ACM SIGCOMM, pages 290–301, September
1998.

[14] D. Saparilla and K. W. Ross. Optimal Streaming of
Layered Video. In Proc. of IEEE Infocom, pages
737–746, Tel Aviv, Israel, March 2000.

[15] D. Saparilla and K. W. Ross. Streaming Stored
Continuous Media over Fair-Share Bandwidth. In
Proc. of NOSSDAV ’00, Chapel Hill, North Carolina,
June 2000.

[16] W. Tan and Zakhor. A. Real-Time Internet Video
Using Error Resilient Scalable Compression and
TCP-Friendly Transport Protocol. IEEE Trans. on
Multimedia, 1(2):172–186, June 1999.

[17] Y. Yang, M. Kim, and S. Lam. Transient Behaviors of
TCP-fiendly Congestion Control Protocols. In Proc. of
IEEE Infocom, pages 1716–1725, Anchorage, AL, May
2001.

[18] Q. Zhang, W. Zhu, and Y-Q. Zhang. Resource
Allocation for Multimedia Streaming over the
Internet. IEEE Transactions on Multimedia,
3(3):339–355, September 2001.

